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ABSTRACT

A support vector machine (SVM) is a popular algorithm for classification learning. The classical SVM
effectively manages classification tasks defined by means of numerical attributes. However, both
numerical and nominal attributes are used in practical tasks and the classical SVM does not fully
consider the difference between them. Nominal attributes are usually regarded as numerical after
coding. This may deteriorate the performance of learning algorithms. In this study, we propose a novel
SVM algorithm for learning with heterogeneous data, known as a heterogeneous SVM (HSVM). The
proposed algorithm learns an mapping to embed nominal attributes into a real space by minimizing an
estimated generalization error, instead of by direct coding. Extensive experiments are conducted, and
some interesting results are obtained. The experiments show that HSVM improves classification
performance for both nominal and heterogeneous data.
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1. Introduction

In the last decade, the support vector machine (SVM) classifier
[1] has proven to be an effective method in the field of machine
learning. SVM possesses advantages with respect to the manage-
ment of high dimensional data and reveals effective generalization
capability. It has been widely used in various applications, includ-
ing handwritten digits recognition [2,3], time series classification
[4,5], gene selection [6,7], and image retrieval [8-10].

However, SVM assumes that samples are represented with vectors
of real numbers [11]. If nominal attributes exist, they are usually
converted into numerical attributes before learning occurs. Integer and
one-of-n coding are popular methods used in managing nominal
attributes. If the number of values in a nominal attribute is not large,
one-of-n coding might be more stable than integer coding [11]. In fact,
both methods possess disadvantages. Regarding integer coding, per-
formance is easily affected by the coding mechanism because different
coding methods lead to different distances between samples. With
respect to one-of-n coding, a nominal attribute is mapped into
multiple binary attributes. After one-of-n coding is completed, the
number of attributes is equal to the number of values of the original
nominal attribute. This method can effectively prevent instability
problems in integer coding. However, it may dramatically increase
the dimensions of samples if a lot of different values exist in the
nominal attributes. Furthermore, both integer coding and one-of-n
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coding do not take full advantage of the implicit classification
information of samples.

Three different methods exist for managing heterogeneous data.
The first is to convert nominal attributes to integers through coding,
and then consider them as numerical attributes. Its major problem is
instability as the performance is easily affected by the use of a coding
mechanism. The second method is to discretize numerical attributes,
and then treat them as nominal attributes, as done in C4.5 [12],
classification and regression tree (CART) [13] and other methods. In
general, discretization causes information loss. The third method is to
learn a distance, such as the value difference metric (VDM), hetero-
geneous value difference metric (HVDM) and other methods [14-16].
This type of method can be combined with classifiers based on
distance (e.g. K-nearest neighbor) [17,18]. In distance learning algo-
rithms, we usually adopt an overlap method or a Bayesian approach to
deal with nominal attributes. The overlap is a simple and effective
method. However, it only determines whether nominal attributes are
equal to one another, and does not fully exploit classification informa-
tion. The Bayesian approach is very effective for handling nominal
attributes. However, the use of this approach implies that all attributes
are independent. Therefore, its performance will degenerate if relation
among attributes is very high. Such as XOR data, the probability of
each attribute is the same, VDM then results in zero distance between
attributes [19]. Moreover, the performance of these algorithms may
deteriorate when decisions depend on multiple attributes [19].

Essential differences exist between nominal and numerical attri-
butes. In general, a numerical attribute describes a particular feature
of a sample. If the value of a numerical attribute is changed, the
entire sample is changed such that the new sample is no longer the
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previous. However, the value of a nominal attribute simply indicates
a certain nominal value and does not describe the specific character
of the sample. Regardless of the value of nominal attribute, as long as
the same nominal attribute is assigned the same value, no problems
will occur. Thus, the nominal attribute is not limited to a fixed value
which makes it possible for a nominal attribute to be mapped into a
real number according to the classification information. Based on this
observation, we develop a new approach to manage nominal
attributes. In order to deal effectively with heterogeneous data, we
use classification information by mapping nominal attributes into a
real space based on generalization error estimation. The values of
nominal attributes are obtained from an optimization task rather
than from integer or one-of-n coding. After mapping is completed,
nominal attributes are treated numerically in the subsequent learn-
ing procedure.

SVM has been successfully applied to various classification
tasks that use numerical data. However, the topic of training
SVM with heterogeneous data has not been fully examined. In
this study, we design a novel heterogeneous support vector
machine (HSVM) algorithm to classify heterogeneous data. Our
HSVM maps nominal attributes into a real space by minimizing
generalization error. The main advantages of HSVM are listed as
follows: (1) HSVM can effectively improve the performance of
SVM in dealing with nominal data or heterogeneous data,
(2) HSVM can improve the interpretability of decisions, and
(3) HSVM s effective in learning with imbalanced data.

The remainder of this paper is organized as follows. Section 2
reviews related studies. Section 3 presents a novel mapping
algorithm for nominal attributes and HSVM. Sections 4 and 5
analyze the experiments using standard datasets. Section 6 con-
cludes our study.

Notations used in the paper are described as follows. The
variable n represents the number of training samples and x;
represents a sample with an index i. For nominal attributes, we
use a* to refer to the kth nominal attribute of the samples. Its

k gk k
values are expressed as {af,as, ..., ap}.

2. Related works

We map nominal attributes into a real space by minimizing the
generalization error, and then use SVM to manage heterogeneous
data. Thus, in this study, we employ the SVM algorithm, general-
ization error, and heterogeneous data. In this section, we review
relevant terms and algorithms.

2.1. SVM and kernel functions

SVM is an effective method for binary classification tasks.
It constructs an optimal separating hyperplane in a feature space.
By a function &, we map an input vector x into a high dimensional
feature space [20]. Given n samples {(x;, ¥;)}{' 1, SVM searches for a
linear decision function with a maximum margin between differ-
ent classes in the feature space, where x; is an input vector with d
dimensions, and y; is a class label of x;.. The decision function
f(x) ={(w, @(x))+b defines a linear hyperplane in the feature space.
The parameters w and b are obtained by solving the following
convex quadratic problem:

I R
slwl<+C i
min SIwi®+ ;&

s.t. yiw,dx)+b)=1-¢;, & =0, Vi, ¢))

where Cis a constant that penalizes for the training errors and &; is
a slack variable. weR? and beR are the parameters of the
hyperplane [1]. Instead of solving this optimization problem, we

use the Lagrangian dual function to obtain a dual formula:
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where ; is a dual variable and contains the upper bound C. The
inner product (D(x;), P(x;)) in the feature space is computed by a
kernel function: (D(x;), D(x;)y = K(x;,x;). By means of the kernel
function, the inner product in a high dimensional feature space
can be efficiently computed without an explicit nonlinear map-
ping. The dual formula shown in (2) is a convex quadratic
optimization problem and possesses a global optimal solution
[21]. The linear kernel function (Kpn(x;,X;)), polynomial kernel
function (Kpor(x;,X;)) and Gaussian kernel function (K¢ay(x;, X;)) are
widely used in the following:

Kun(Xi, Xj) = (Xi, X;);
Kpor(xi, X)) = (i, %)+ 1),
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2.2. Generalization error estimation

Some techniques used to estimate generalization errors, such as
leave one out (LOO) as well as span and radius margin estimations, are
common. LOO estimation consists of three steps: (1) remove one
element from the training data, (2) construct a decision function over
the remained data, and (3) test the model with the removed element
[20]. LOO is nearly unbiased as an estimator of the expected
generalization error [1], where the estimation is given as

1
E@Gy 1) = ELX1LY1 X V), @

where p?;! is a probability of a classification error tested on the
samples of size n—1, and L(x1,¥,...,Xn,y,) iS the number of
misclassified samples. LOO is an important statistical estimator
of learning algorithms and it is frequently used in model selection.
Unfortunately, it is time-consuming, as testing of each element in
the training samples is required. Some generalization error esti-
mations are derived from LOO, such as the span and radius margin
estimations [1].

The concept of span for support vectors was first proposed by
Chapelle and Vapnik [22]. The span is derived from an LOO error
estimation [1,20] and the upper bound of the span is computed by
means of

1 S £ )
T_ﬁi; P(afsp—1), (5)
where ¥ is a step function (i.e. ¥(x)=1 if x>0, and ¥ (x)=0
otherwise) [20] and o} is the optimal solution for dual formation,
as shown in (2). The variable s3 is the distance between the point
&(x,) and set A, in the feature space where

Ap= > D),y Ai=1. (6)
i#par>0

izp

The span is an upper bound of LOO and is not continuous. A
small change in kernel functions causes a considerable change in
the support vector set A,. This change is discontinuous and results
in discontinuous changes to s and error bound T [20].

The radius margin estimate is another generalization error
estimation and can be considered as a rough upper bound of the
span estimation. Suppose that the maximal distance between
different classes is y, and R is the minimum radius of a sphere
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that includes all samples in the feature space. The upper bound of
radius margin error estimation is computed as in [1] as the
following:

T==. %)

The margin y is computed according to the following formula:

-1
n
Y= <Z a?) , ®
i=1
where ¢ is the optimal solution of the dual formula in (2). The
minimum radius R is then computed based on the following
optimization task:

min R%st. lc—Dx)I?<R?, i=1.n. )
C

where c is the center of the minimal sphere with radius R in the
feature space constructed by a mapping function @(-). The corre-
sponding dual formula is given as

n n
max > BKELx)— D B K. xp).

i i=1 ij=1

n
st. > pi=1, p;=0i=1.n (10)
i=1
This dual formula is a convex quadratic programming problem,
and the radius R in primal formula (9) can be then obtained from
the following formula:

R* =" diag(K)— 7K p, (11)

where f is the optimal solution of the dual formula in (10), and
Knxn =[k(x;,x;)] is a kernel matrix. In regularization kernel func-
tions, K(x;,x;) is a constant [23]. We can then further simplify the
programming problem given in (11). For example, in a Gaussian
kernel function, diag(K) is a constant of 1. In order to simplify the
calculation, a variance of kernel matrix K can be used to estimate
the radius of sphere R [20].

It should be noted that R?/y? reflects the upper bound of a
generalization error estimation and does not reflect a real test
error. In a Gaussian kernel function, if the parameter ¢ takes an
extremely large value, samples will be mapped into a flat ellipsoid
with a large radius, and the radius will consider only those points
showing the greatest deviation. In order to avoid this problem, we
must rescale samples in the feature space. We can then obtain a
much tighter error bound [22].

A tight error bound can yield improved prediction perfor-
mance. Although generalization error estimation using the span
bound is only slightly improved than when using the radius
margin, the radius margin bound yields a quality result similar to
that of span bound. In fact, optimization with a span bound is more
difficult to implement than a radius margin bound [20]. In this
study, we analyze optimization in relation only to the radius
margin bound, although in our experiments, similar results have
been obtained with the span bound.

2.3. Managing heterogeneous data

Decision trees are a class of prediction models that describe the
relationship between attributes and class labels in the field of
machine learning [24]. C4.5 is a popular decision tree algorithm. It
has inherited the advantage of the ID3 algorithm and can be
extended to manage heterogeneous data [12]. CART is another
classic decision tree algorithm that can also handle heterogeneous
data [25].

Distance learning is another kind of technique to classify
heterogeneous data. Examples include the heterogeneous Euclidean

overlap metric (HEOM), and the previously mentioned VDM and
HVDM. These methods can be combined with distance-based
classification algorithms, such as KNN [16].

HEOM is a simple distance measure for heterogeneous data
[16]. The HEOM distance between x; and x; is given as

m
HEOM(x;, X)) =, | > d(xgaxjk)z, (12)
k=1

where m is the number of the attributes, and d(xf,xf) is the
distance to the kth attribute of x; and x;, defined as
1, if ith attribute of x or y is unknown;
d(xk, xky = overlap(x¥,x¥), if ith attribute of x or y is nominal;
isXj
distance(xf.‘,xj’.‘), if ith attribute of x and y is numerical;

13)

where overlap(xff,x]’-‘) is the overlap distance between nominal

attributes that is defined as overlap(xﬁ‘,le‘) =1 if xf=xF; and
overlap(x¥, x¥) =0 otherwise. overlap(x},xf) is a simple and fast
matching function which ignores information of classification. The
clistance(xf‘, xJ’F) is a normalized Euclidean distance between x¥ and xJ’-‘.

VDM calculates the distance between nominal attributes by
utilizing the label information of samples [16]. The more similar
the frequencies of nominal attributes that appear in one class, the
shorter is the distance between attributes. The VDM distance with
respect to two nominal attribute values x¥ and xJ’-‘ is defined as

¢ 2
vdm(xf,x)= > (P(l\x{-‘)—P(uxj’f)) , (14)
=1
where c is the number of output classes, and P(l|x¥) is a conditional
probability that the output class is [ given that the kth attribute has
the value x¥ [16].

In the VDM and HVDM methods, we use (14) to compute the
distance with respect to the ith nominal attribute. Regarding
the distance between numerical and unknown attributes, we use
the same method as in HEOM in which the distance between
numerical attributes is a normalized Euclidean distance, whereas
the distance between unknown attributes is the maximum dis-
tance. However, VDM utilizes only the conditional probability to
manage nominal values.

Cascading is an interesting architecture for designing classifica-
tion algorithms and uses multiple classifiers to increase learning
accuracy [26]. Cascading usually includes two levels. The first level
uses the original dataset. The outputs from this original dataset are
then used as inputs for the second level. In other word, the second
level is trained through the use of the original dataset as well as
outputs from the previous level [27]. In addition, cascading can
manage heterogeneous data. For example, one level is trained
through the use of nominal attributes and another is trained
through the use of numerical attributes. Yet another algorithm
for managing nominal attributes is SVM [28]. This method trans-
lates a nominal attribute (with M states) to M points in a M—1
dimensional space, and the final position is determined by mini-
mizing the LOO error.

In generally, the classical SVM constructs a decision function for
numerical samples. If nominal attributes exist, they must be
converted in advance to numerical attributes by means of coding.
A simple and fast method is positive integer coding [11]. However,
different coding techniques lead to different kernel matrices.
Another coding technique for nominal attributes is one-of-n
coding [11] previously mentioned. A nominal attribute with m
possible values is decomposed into m attributes. For example, a
color attribute with values of {red, green, blue} is decomposed to
three binary attributes. The inner product of two nominal attri-
butes is 0 or 1 accordingly. If two samples have the same nominal
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value, the inner product is 1; otherwise, it is 0. In essence, this
kernel represents a matching function. The inner product using
one-of-n coding indicates the number of nominal attributes that
are equal.

A previous study has reported that one-of-n coding is more
stable than integer encoding when the range of nominal attributes
is not extensive [11]. However, the dimension increases consider-
ably if many values exist within an attribute is very large.

3. HSVM for heterogeneous data

Classification tasks are usually described by nominal and
numerical attributes. In this study, we design a novel algorithm
(HSVM) to manage heterogeneous data. HSVM maps nominal
attributes into a real space by minimizing the generalization error.
The mapping is learned by a gradient descent scheme. Starting
from initialization, HSVM iteratively updates the assignments of
nominal attributes in the learning procedure.

As shown in Fig. 1, we can iteratively adjust the assignments of
the nominal attributes in the normal direction of a classification
plane in order to increase the margin between different classes.
The margin between classes increases if the assignments of red-
circled support vectors increase while blue-starred support vec-
tors decreased within each dimension. In other words, we can
increase the classification margin by moving the red-circled points
in an upper-right direction or by moving the blue-starred points in
a lower-left direction. If we simply consider the margin bound as a
generalization error estimation to update the assignments of
nominal attributes, the margin may increase constantly such that
the algorithm will not converge. The radius margin generalization
error bound avoids this problem because the radius parameter
prevents values of nominal attributes from infinitely increasing. In
fact, the error bound of a classical SVM depends not only on the
margin, but also on the radius of the smallest sphere containing all
samples in the feature space. Nevertheless, we usually ignore the
radius in the optimization process because the radius of a sphere is
a fixed constant in a given feature space [29].

Fig. 2 presents 400 samples in a 2-D space, i.e., each sample is
described by two nominal attributes. Twenty possible values for each
nominal attribute exist, thus yielding 400 different combinations.

5 . . .
* class 1
o class 2
4 M o o 4
N
Q
5 3] 1
2
&
w© 2f 1
£
€
2
1 L 4
0 . . . .
0 1 2 3 4 5

Nominal attribute 1

Fig. 1. Schematic diagram for mapping nominal attributes. The vertical and
horizontal axes indicate different nominal attributes that are coded by integer.
There is a classification plane in the middle of the figure. We can expand the
margin between classes by increasing the values of red-circle points in the
direction of vertical and horizontal axes simultaneously, or decreasing the values
of blue-star-like points in the same way. (For interpretation of the references to
color in this figure caption, the reader is referred to the web version of this paper.)

Red circles and blue stars represent samples from different classes.
Fig. 2(a) and (b) shows the samples before and after mapping
respectively, by means of HSVM. Curves in the figures represent
the decision hyperplane learned with the Gaussian kernel. The radius
margin error estimation is used to learn the mapping function. We
observe that the 400 training samples are collected in nine positions
after mapping nominal attributes into the real space. We can explain
this interesting phenomenon as follows. The role of certain feature
values in the decision is the same and they are assigned the same
value by means of HSVM. This means that we can use these nine new
samples to replace the original 400 training samples. The number of
feature values is reduced to three. In addition, the computational cost
reduces considerably. Moreover, the classification margin increases
significantly after mapping. The corresponding generalization error
estimation falls from 0.2224 to 0.0217, and the classification accuracy
rises from 98.5% to 100%.

3.1. Mapping function for nominal attributes

HSVM maps the nominal attributes into a real space by
iteratively updating the values of nominal attributes such that
the generalization error estimation is minimized. HSVM alternates
the classical SVM optimization with a gradient descent procedure.
We next provide the gradient (regarding values of nominal
attributes) based on the radius margin error bound. The objective
function of HSVM is defined as

R2
T:P:RZ*HWHZ, (15)

where R? is the radius of a minimum sphere enclosing all samples
and y? is the maximum margin between classes in the feature
space. The margin y is equal to 1/llwll. Therefore, we can describe
the radius margin error bound as R?/y? as R?x/lw|2. We suppose
that parameters a* solve the quadratic dual formula given in (2).
The weight vector Ilwl then realizes the maximal margin hyper-
plane in the feature space with a geometric margin [30] such that

5 1

n -1

1

The partial derivative of the generalization error estimation T
with respect to a nominal attribute a¥ is computed as

oT allwi?  aR?
— =R w2, 17)
aat oak " oak

Starting from the initial values of nominal attributes, we
iteratively update all values using (17) until the generalization
error bound T converges to an optimal point. In order to calculate
the partial derivative of the error bound, we must compute the
derivative of R? and Ilwl? with respect to the nominal attributes.

The optimal objective value %HWHZ of primal formula in (1) is
equal to the optimal objective value of the dual formula in (2)
because no duality gap exists in the optimal solution. In mathe-
matical terms, this can be expressed as

n n
Iwl?=2%>"af— Y afalyyKKf, x)=2a"1-a"Ka, (18)
i=1 ij=1

where o is the optimal solution (a*, a*z‘...(x’g)T. Note that the value
of a depends implicitly on nominal attribute values, but the partial
derivative of Ilwll? with respect to nominal values is irrelevant to
a when « is the optimal solution for llwl? [20]. We can then
calculate the derivative of lwlI? with respect to nominal attributes
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Fig. 2. Demonstration of mapping nominal attributes. A total of 400 samples are shown in the figure, and each sample has two nominal attributes containing 20 different
values. The nominal attributes are coded by integer coding and then are normalized. A classification boundary appears in the middle of each figure. (a) Initialize and rescale
nominal attributes by integer coding. (b) Map nominal attributes with HSVM. Some samples (indicated by blue stars and empty red circles) gather together. (For
interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

a¥ according to the following:

_ Z aatyy JaK(x,,x]) " <al<> 19)

k
=1 aa

alwi?
aak

In the same manner, we can compute the derivative of radius
R? with respect to nominal attribute value a¥ from (10) and (11)
such that

OR® I 0K (%, Xi) 0K (Xi, X;)
aa" ;ﬁ aa" Z Pil; aa"
. (oK oK
—f diag <aa,> .y <aa,> B, (20)
1 1

where " is the optimal solution for the dual problem given in
(10).

In Gaussian or other kernel functions, oK(x;,x;)/daf is zero.
Thus, the corresponding derivative of the radius is simplified to

: K,
- Z B = T <6—K>ﬂ. @1

oak ak oak

We next combine (20) and (19) into (17) to obtain the
derivative of the error bound T with respect to the nominal
attribute value a¥ so that

oT oK oK oK
— = —R*|a"—. lwi? d -p— 22
oaf <a oaf a>+ v (ﬁ lag<af> ﬁaa%‘ ) 2

1

where R? and /3 are learned from dual optimization (10), and w12
and « are trained from (2). We use this formula to update values of
nominal attributes to decrease the estimated generalization error.
In regularization kernel functions, we may reformulate (21) as
(22), and then the derivative of the error bound is simplified to

l)T 2 T 6K 2 T 6K
—=—R — — lwll — . 23
oa¥ (a 0a’fa> P aafﬂ 23)

1

where R? = #"1—'Kf and |wl? = 2a"1—aKa. The derivative of
the kernel matrix K with respect to a¥ is a major part of (22) and
(23), and we can calculate the derivative of the kernel matrix
according to a given kernel function.

For example, the Gaussian kernel is k(x,x') = exp(—(Ix—x'11%)/
(262)). The partial derivative of the kernel matrix K with respect to

nominal attribute value a¥ is

Ilx—x' 112 1 o(1x—x1?)
T 202 2527 od
+1 if xXk=a¥

)x _1 ifxk—ak 24)
0 otherwise,

oK(x,X") exp
oak

Xk _ X!k

:K(X,X’)(— p

where d¥ is the ith nominal attribute value of the kth dimension of
Sample x, and x* and x* are real values of the kth dimension of
Samples x and x'.

For a polynomial kernel function, the kernel function is
kx,x") = ((x, x'y+¢)?, and its partial derivative with respect to a¥ is

oK (x,x') da—1 _ 0(X, X))
— T —d({x,x'Y+cC X ——
adk (x,x)+c) oa*
X/k if xk = ak and X/k + ak
xkif xk # ak and x* = a¥

=d(x,x)+0)? 1 x (25)

2d¢ if x¥=a¥ and x* = a
0 otherwise,

In the same manner, we can obtain the derivatives of the other
kernels.

3.2. HSVM

We next present the details of the HSVM. After mapping
nominal attributes into a real space, the nominal and numerical
attributes are combined. A notable fact is that numerical attributes
of samples participate in the entire learning process, including the
mapping of nominal values and computing of the generalization
error. The procedure is formulated in Algorithm 1.

Algorithm 1. Heterogeneous support vector machine algorithm.

Input:
Heterogeneous dataset X = {x1,Xz, ..., Xp}.

Output:
A SVM classifier and a mapping table for each nominal
attribute.

Iteration:

1: t<0

2: Initialize each nominal value a¥ (using P(k|x;) or an integer).

3: while stop criteria not satisfied do



S. Peng et al. / Pattern Recognition 48 (2015) 2072-2083 2077

4:  Calculate margin and kernel matrix K by solving
optimization problem (2).

5:  Compute radius R by solving (10), or approximate R with
variance of the matrix K.

Calculate 0—7; for each nominal value according to (22).
aat
Update mapping value (a¥)* "' « (a:-‘)t+y:7Tk and
i
compute the error bound T with a step y.
t—t+1

9: end while

o

In Step 2, we initialize each nominal value a¥ with its condi-
tional probability P(k|x;) in the same manner as VDM:

P(kjx;) = Naske (26)
N a;,k
where N, i  is the total number of times of a; of the kth attribute that
occurs in Class ¢, and N, is the total number of times of g; of the kth
attribute in all samples, that is Ny, = Zf: 1 Ng.c. Cis the total
number of classes [19]. In (26), we fix Class c as either the positive or
the negative class. In addition, we can certainly initialize the nominal
attribute values by means of integer or other coding.

4. Experiments

We test the proposed algorithm HSVM. Datasets are down-
loaded from the UCI machine learning repository [31]. We compare
the performance of HSVM with other popular classification algo-
rithms, including CART, J4.8, SVM, and IBk. The detailed information
of datasets is given in Table 1. The samples containing missing
values are removed before experiments are conducted. The first 10
classification tasks possess only nominal attributes, and the other
10 tasks are described with both nominal and numerical attributes.

Three multi-class tasks are shown in Table 1. The one-against-
one and one-against-all methods are two popular strategies for
extending SVM [32]. In the one-against-one approach, we must
train CY binary classifiers that separate each pair of classes. The
one-against-all approach trains only N different binary classifiers
that distinguish the samples in a single class from those in all
remaining classes. Assuming that each binary classifier is well
tuned, the one-against-all strategy is as accurate as other
approaches using SVM [32]. In this study, we utilize one-against-
all for multi-class tasks and we evaluate the algorithms based on
10-fold cross validation. Both SVM and HSVM use a Gaussian
kernel function in the following experiments.

4.1. Comparing HSVM with standard SVM

In this section, we compare HSVM with SVM using a tic-tac-toe
dataset. Both HSVM and SVM estimate the generalization error
using the radius margin error bound.

In Fig. 3, the blue curve represents the generalization error
bound, and the red curve represents the actual prediction error.
The errors shown in Fig. 3(a) and (b) are computed using SVM and
HSVM, respectively. As shown in Fig. 3(a), the actual prediction
error of SVM does not decrease efficiently, although the SVM
utilizes the radius margin error bound to optimize parameters. In
Fig. 3(b), HSVM uses the same error bound radius margin to
optimize parameters and map nominal values into a real space.
Both the error bound and the actual prediction error decrease
significantly, as shown in Fig. 3(b).

Table 1
Datasets information.

No. Dataset Instance Nominal Numerical Class
1 tic-tac-toe 958 9 0 2
2 monks-1 432 6 0 2
3 monks-2 432 6 0 2
4 monks-3 432 6 0 2
5 breast cancer 286 9 0 2
6 solar flare1X 323 10 0 2
7 kr-vs-kp 3196 36 0 2
8 spect 267 23 0 2
9 vote 435 16 0 2

10 mushroom 8124 22 0 2

11 crx 690 9 6 2

12 heart 270 7 6 2

13 hepatitis 155 13 6 2

14 sick 2643 16 6 2

15 adult 48 842 8 6 2

16 credit 690 8 6 2

17 tae 151 2 3 3

18 cmc 1473 7 2 3

19 ann 3428 15 6 3

20 allhypo 2800 21 8 2

In order to explain the impact of different initial assignments of
nominal attributes, we use monk-1 data as an example. A com-
parative analysis is given in Fig. 4, and both SVM and HSVM use
the same error bound radius margin. In Fig. 4, the curve containing
blue circles indicates errors (test and estimate errors) using an
initial assignment method, whereas the red rhombus indicates
errors using another initial assignment method.

As shown in Fig. 4, the estimated and real test errors of SVM are
affected by initial assignment methods for nominal attributes.
SVM will converge at the fifth iteration. In addition, as shown in
Fig. 4(b), the real prediction error may increase slightly as the error
bound decreases.

Fig. 4(c) and (d) shows that the estimated and real test errors
decrease in HSVM with an increase in the number of iterations,
and the algorithm converges quickly. The different initial assign-
ments do not yield the same results, although the results are very
similar after the convergence. The difference emerges from the
fact that the generalization error estimation is a non-convex
optimization function [33] and it may converge at a local optimal
point. Either random search methods or global optimization
methods may be used to select hyper-parameters [34,35].

4.2. Comparing HSVM with other algorithms

VDM, C4.5 and CART are commonly used in dealing with
nominal data. We compare these algorithms with HSVM, and the
results are shown in Table 2, where both SVM and HSVM
algorithms use the radius margin error bound. HVDM, HMOM
and HEOM are three KNN algorithms using the VDM distance, the
Manhattan overlap distance and the Euclidean overlap distance,
respectively [36]. The J4.8, IBk and CART algorithms are imple-
mented in Weka 3.6 [37,38]. The results of the cascading method
are those reported in [27]. However, the corresponding deviations
of cascading are not reported in [27].

In Table 2, regarding each data and classification algorithm, the
first row shows the average accuracy, whereas the second shows
the corresponding deviation. The highest accuracy for each dataset
is given in boldface. As shown in Table 2, the accuracy of HSVM is
superior to that of other algorithms. Moreover, the average
accuracy of HSVM is higher than that of SVM by 4.09%.

Many heterogeneous datasets exist that contain both nominal and
numerical attributes in practice. We compare the performances of
HSVM with other classifiers and the results are shown in Table 3.
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Based on these results, we observe that HSVM can effectively
improve the accuracy of classification. A paired t-test is a common
way to determine whether the average difference in results
between two classifiers is considerably different [39]. In order to
compare these algorithms, we use paired t-test to compare the
performances of different algorithms. We first obtain the average
classification accuracies of the 10 nominal and heterogeneous
datasets computed with different classification techniques, and
then conduct t-test on the classification accuracies. According to

our experiments, although HSVM does not produce the best
performance on all the classification tasks, averagely speaking,
HSVM is better than the other algorithms under confidence of 95%.

5. Discussion

In this section, we analyze the properties of HSVM beyond
classification performance.
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Table 2
Comparative analysis of accuracy and variance for nominal datasets.

Dataset SVM HSVM HVDM HMOM HEOM J4.8 1Bk CART CASDE
tic-tac-toe 93.43 100.00 89.98 98.64 98.64 84.24 98.85 92.90 98.33
(0.05) (0.00) (0.32) (0.12) (0.12) (0.35) (0.23) (0.24) -
monks-1 89.25 100.00 80.09 99.77 99.77 96.53 99.54 90.51 99.34
(0.32) (0.00) (0.45) (0.05) (0.05) (0.15) (0.29) (0.20) -
monks-2 83.10 100.00 94.91 56.71 94.91 67.13 59.26 91.90 67.14
(0.31) (0.00) (0.23) (0.66) (0.23) (0.47) (0.49) (0.23) -
monks-3 97.14 100.00 100.00 99.07 99.07 100.00 98.84 100.00 98.63
(0.09) (0.00) (0.00) (0.10) (0.10) (0.00) (0.22) (0.00) -
breast-ca 75.39 76.15 67.48 74.83 74.83 7413 72.38 69.23 74.14
(0.19) (0.15) (0.60) (0.50) (0.50) (0.44 (0.50) (0.46) -
solar-1X 97.75 97.75 96.90 97.83 97.83 97.83 95.96 97.83 97.84
(0.05) (0.05) (0.18) (0.15) (0.15) (0.15) (0.19) (0.15) -
kr-vs-kp 97.26 98.99 96.81 97.00 97.00 99.44 97.28 96.27 99.44
(0.02) (0.01) (0.18) (017) (0.17) (0.07) (0.19) (0.19) -
spect 83.90 84.29 81.65 76.40 76.40 78.27 75.28 80.90 83.68
(0.46) (0.41) (0.43) (0.49) (0.49) (0.39) (0.42) (0.38) -
vote 96.03 96.92 95.63 93.10 93.10 96.32 92.41 95.40 96.69
(0.15) (0.09) (0.21) (0.26) (0.26) (017) (0.24) (0.20) -
mushroom 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.94 100.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) -
Average 91.32 95.41 90.34 89.34 93.15 89.39 88.98 91.49 91.52
Table 3 Table 4

Comparative analysis of heterogeneous datasets.

Mapping nominal attribute “odor” to real numbers.

Dataset SVM  HSVM HVDM HMOM HEOM J4.8 1Bk CART

crx 8584 86.60 8392 8560 8469 8530 8116 8637
(011) (0.11) (0.40) (038) (0.39) (0.35) (0.43) (0.34)
heart 8312 8448 7926 8037 7704 7741 7481 78.89
(047) (0.64) (0.46) (0.44) (0.48) (0.45) (0.50) (0.42)

hepatitis 8724 90.76 84.52 84.52 85.81 89.68 82.58 90.32

(034) (0.60) (0.39) (039) (0.38) (0.31) (041) (0.29)
sick 9676 98.89 9619 9693 9620 9760 9650 9710
(0.04) (0.02) (0.21) (020) (020) (0.15) (0.19) (0.16)
adult 8682 86.87 7840 7898 7782 8186 7791 82.77

(011) (0.09) (0.46) (0.46) (047) (037) (0.39) (0.36)
Au-credit 8633 8649 8261 8391 8188 8522 8362 8565

(018) (024) (0.42) (0.40) (043) (0.35) (0.36) (0.34)
tae 7361 7727 6026 6402 6071 68.65 73.07 69.76
(0.14) (0.14) (0.63) (0.60) (0.63) (047) (0.51) (0.47)
cme 7067 7278 6348 5981 5981 68.97 59.67 7149
(0.05) (0.09) (0.60) (0.63) (0.63) (0.47) (0.62) (0.44)

ann-test 9477 9894 9580 9431 9314 9930 9221 99.30
(0.02) (0.01) (021) (0.24) (026) (0.08) (0.28) (0.08)

allnypo 9451 9633 945 9373 9245 9954 9137 99.49
(0.03) (0.02) (023) (0.25) (027) (0.07) (0.29) (0.07)

average 8597 8794 8189 8222 80.95 8535 8129 86.11

5.1. Interpretability of decisions

Because SVMs nonlinearly map samples into a high dimensional
feature space when constructing the optimal separating hyper-
plane, the decision is difficult to understand. We can improve the
interpretability of the decision by mapping nominal attributes into
a real space using HSVM. Regarding the Gaussian kernel, calculating
the coordinates of samples in the feature space is difficult, but we
can analyze the distance between samples in the input space and
feature space. Since the Gaussian kernel is a monotonic function of

Nominal Almond Anise Creosote Fishy Foul Musty None Pungent

value

Initial value 1 2 3 4 5 6 7 8

Mapping 1.076 1138 6.89 null 6.883 null  1.657 8.355
value

distance, the closer the samples are to each other in the input space,
the smaller is the distance between samples in the feature space
and vice versa. Therefore, the mapping value in the feature space
indirectly reflects the distance in the input space. The mapping
values of nominal attributes directly reflect the distance between
samples when we use the linear kernel function.

We use mushroom data as an example to explain the advan-
tages of HSVM. The mapping values of the nominal attribute
“odor” are shown in Table 4, where the Gaussian kernel and the
radius margin generalization error are considered.

Because the attributes “fishy” and “musty” do not appear in the
mushroom data, the mapping values for these are null in Table 4.
We can clearly observe that, based on Table 4, the mapping values
of “almond”, “anis” and “none” attributes are quite similar, and
samples containing these attributes corresponded to the innoc-
uous mushroom. It is important to note that the mapping value of
“none” attribute is changed from the initial value of 7 to 1.657. The
mapping values of “creosote”, “foul” and “pungent” attributes are
all relatively large and samples showing these types of odor
corresponded to the noxious mushroom. This confirms our intui-
tion and is identical to the analysis in [19].

5.2. Analysis on learning with imbalance data

A dataset is imbalanced if the categories are not equally
represented or nearly so, that is, one class is at least under-
represented relative to the others. Many imbalanced datasets
appear in practical applications such as intrusion detection,
medical diagnosis and text categorization [40,41]. The
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Table 5
Comparison of the performance of HSVM with that of other classifiers for handling
imbalanced data.

Dataset SVM HSVM HVDM HMOM HEOM 4.8 1Bk CART
Correct incl 16 44 10 4 4 0 17 8
Error in c1 (34) (6) (40) (46) (46) (50) (33) (42)
Accuracy c1 32 88 20 16 16 0 34 16
Correct in c2 290 290 267 286 286 290 289 282
Error in c2 0) (0) (23) (4) (4) (0) (1) (8)
Accuracy c2 100 100 92.07 98.62 98.62 100 99.65 9724
Total-acc 90 98.24 8147 8529 8529 8529 90 85.29

classification of imbalanced datasets is often associated with
asymmetric costs of misclassification [42]. SVM has been well
developed for classification and recognition tasks, but this has
been generally based on the assumption that datasets are
balanced. Performance is not satisfactory when samples are
seriously imbalanced. Currently, methods for imbalanced data
focus on preprocessing data or improving classifiers. HSVM com-
bines these two methods in a single learning procedure. The
attribute mapping can be interpreted as preprocessing data, but
it is also a step in constructing classifiers. As shown in Fig. 5 and
Table 5, the mapping methods can effectively deal with imbal-
anced datasets. We should note that the one-against-all method,
which is used in multi-classification, may lead to imbalanced
datasets.

In Fig. 5, the blue-starred points belong to one class and the red-
circled points belong to another class. Fig. 5(a) uses a standard SVM
method to construct a classifier, and the curve in the middle of the
figure is a separating hyperplane. Fig. 5(b) uses HSVM to learn a
separating hyperplane. As shown in Fig. 5(b), HSVM maps the red
and blue points to four and five groups, respectively. It is important
to note that there are a fewer number of blue points than red points
in the original dataset, but there are a greater number of blue groups
than red groups. If we utilize a clustering algorithm, the red and blue
groups can be represented by four and five points respectively. Then
the proportion of blue points and red points is altered from 52:348 to
5:4. HSVM can increase the margin from 0.0274 to 0.1139, and the
real prediction accuracy increases from 95.75% to 100%. As shown in
Fig. 5, HSVM changes the distribution of samples by mapping
nominal attributes into a real space.

Table 5 shows the test results of imbalanced data. In the
original monk-2 dataset, the numbers of samples in the first class
and the second class are 140 and 290 respectively. We randomly

select sample of 50 samples in the first class and construct a new
imbalanced dataset that contains 50 samples in the first class and
290 samples in the second class. We then compare the perfor-
mance of HSVM with that of other classifiers in Table 5.

In the dataset column in Table 5, correct in c1 and correct in c2
denote the number of samples that are correctly classified in class
1 and class 2 respectively. The error in c1 and error in c2 denote
the number of samples (i.e. given in parentheses) that are
misclassified by the classifier. As shown, all samples in class
1 are misclassified as class 2 by the J48 algorithm, and the IBk
and SVM algorithms prove to have a slight advantage at classifying
samples in class 1. HSVM has obvious advantages at classifying
samples in classes 1 and 2.

5.3. Analysis on running time

We analyze the running time of our new algorithm by compar-
ing it with SVM using the ann-test dataset. The hyper-parameters
of SVM are learned by the gradient descent algorithm instead of by
a grid search method because the former has lower computational
costs [20]. The hyper-parameters of HSVM are learned together
with the nominal mapping values. Both SVM and HSVM use the
gradient norm as a stopping criterion in the experiments. In other
words, if the gradient norm is less than the predefined tolerance,
the iteration is halted.

As shown in Fig. 6(a), SVM is faster than HSVM when the
stopping gradient norm is a very small value, i.e., 10e —35. Two
reasons explain this phenomenon. The first is that the gradient
computational cost of HSVM is higher than that of SVM. HSVM
must calculate the gradient of hyper-parameters and nominal
values. SVM must only calculate the gradient of hyper-parameters.

The second reason is that the number of iterations varies
considerably when the stopping criterion is very small. The
number of iterations in HSVM is greater than that in SVM. SVM
will converge to a large error bound with few iterations. However,
HSVM will converge to a small error bound with many iterations.
For example, the error bound of HSVM converges to 0.1813 with 20
iterations and the error bound of SVM converges to 0.205 with
5 iterations, as shown in Fig. 6(c).

If the stopping criterion (gradient norm) is not a very small
number, HSVM and SVM require a similar running time. As shown
in Fig. 6(b), HSVM and SVM use the gradient norm 10e—5 as a
stopping criterion and, because their iterations are similar, their
running times are nearly identical. Specifically, the iteration of
SVM is 5 and that of HSVM is 7 until convergence occurs, as shown
in Fig. 6(d).



300

200

100

Running Time (s)

0.23

0.22

0.21

0.2

Error bound

0.19

0.18

S. Peng et al. / Pattern Recognition 48 (2015) 2072-2083

—o—running time of SVM
—o—running time of HSVM

500 1000 1500 2000
Sample Size

—o—error bound of SVM
—o—error bound of HSVM

5 10 15 20
lterations

b
40

30+

Running Time (s)

0.23

0.22

0.21

0.2

Error bound

0.19

0.18

—o—running time of SVM
—o—running time of HSVM

500 1000 1500 2000
Sample Size

—o—error bound of SVM
—o—error bound of HSVM

5 10 15 20
Iterations

2081

Fig. 6. Run-time analysis using the ann—test dataset. Running time with (a) 10e—35 tolerance and (b) 10e—5 tolerance. Error bound with (c) 10e—35 tolerance and

(d) 10e—5 tolerance.

In point of fact, the convergent speed of HSVM is faster than
that of SVM. However, the computational cost of HSVM is greater
than that of SVM, primarily because HSVM can converge to a
smaller value and requires more iterations. The computational cost
chiefly depends on the number of iterations. We examine the
number of iterations of both HSVM and SVM. We use gradient
norm as the stopping criteria and a tolerance of 10e—3. The
maximal number of iterations is 20. Both SVM and HSVM use the
radius margin error bound in the learning procedure.

As shown in Table 6, HSVM requires more iterations than does
SVM because we use the difference between two adjacent itera-
tions as the stopping criterion. In fact, the convergence rate of
HSVM is larger than that of SVM. If we assign a fixed value as the
estimated error bound (i.e., use a fixed objective value as stopping
criteria), HSVM has a faster convergence rate than does SVM.
Although HSVM is more complex than SVM, the convergence
speed of HSVM is not slower than that of the standard SVM. In this
study, we use a simple gradient descent method to update
nominal values. We can consider other fast methods such as the
stochastic gradient method [43].

6. Conclusion and future work

Classification and regression tasks are usually described by
numerical and nominal attributes in many real world applications.
The classical SVMs do not consider the difference between these
two types of attributes. In this study, we designed a learning
algorithm to deal with heterogeneous data. Our method learns a
mapping from nominal attributes for use in a real space by
minimizing the generalization error radius margin. Experiments

Table 6

Analysis of Iterations.

Dataset Number of Convergence Number of Convergence
SVM iteration value of SVM HSVM iteration value of HSVM
tic-tac- 4 0.64 11 0.20
toe
monk-1 5 0.79 7 0.05
monk-2 3 0.71 8 0.13
monk-3 2 0.45 14 0.04
kr-vs-kp 3 0.37 14 0.17
heart 4 0.61 6 0.54
hepatitis 3 0.49 13 0.35
sick 4 0.20 6 0.16
adult 2 0.60 11 0.47
credit 3 0.51 8 045
tae 5 0.84 6 0.82
average 3.45 0.57 9.45 0.31

were conducted to compare the performances of different learning
algorithms and we arrived at the following conclusions:

1. Although it is common to code nominal attributes with integers
and then consider them as numerical, this is not always the
best solution. Nominal and numerical attributes should gen-
erally be handled separately.

2. After mapping nominal attributes into a real space, we can improve
the performance of SVM by a reasonable computational cost.

3. HSVM produces quality performance in managing imbalanced
tasks. This superiority arises from the fact that HSVM changes
the distribution of samples in mapping nominal attributes. The
different nominal attribute values may be converted to the
same value and thus, the issue of imbalance will be reduced.
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The proposed HSVM can also be applied to regression tasks,
where the optimization objective and learning algorithm must
nonetheless be reconsidered. We will examine this application in a
future study.
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