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Abstract—For real-world applications, multilabel learning
usually suffers from unsatisfactory training data. Typically, fea-
tures may be corrupted or class labels may be noisy or both.
Ignoring noise in the learning process tends to result in an
unreasonable model and, thus, inaccurate prediction. Most exist-
ing methods only consider either feature noise or label noise in
multilabel learning. In this paper, we propose a unified robust
multilabel learning framework for data with hybrid noise, that
is, both feature noise and label noise. The proposed method,
hybrid noise-oriented multilabel learning (HNOML), is sim-
ple but rather robust for noisy data. HNOML simultaneously
addresses feature and label noise by bi-sparsity regularization
bridged with label enrichment. Specifically, the label enrich-
ment matrix explores the underlying correlation among different
classes which improves the noisy labeling. Bridged with the
enriching label matrix, the structured sparsity is imposed to
jointly handle the corrupted features and noisy labeling. We
utilize the alternating direction method (ADM) to efficiently
solve our problem. Experimental results on several benchmark
datasets demonstrate the advantages of our method over the
state-of-the-art ones.

Index Terms—Bi-sparsity, hybrid noise, label enrichment,
multilabel learning.

I. INTRODUCTION

MULTILABEL learning deals with the problem of
assigning one instance with multiple labels simulta-

neously. For example, a document may belong to multiple
different topics, while an image usually contains more than
one type of object and, one music can be annotated with more
than one tag reflecting different styles. Due to its importance
in real-world applications, a number of methods [1]–[6] on
multilabel classification have been proposed, which have been
successfully used in many applications. Generally, compared
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with binary and multiclass classification, multilabel learning is
more challenging due to the underlying complex correlation
among multiple labels. Although many multilabel classifi-
cation methods have been developed and found useful in
diverse applications, multilabel learning is still rather chal-
lenging, especially when the training data contain complex
noise [7]–[9].

In real-world applications, data may contain noise which is
defined as anything that obscures the relationship between the
features of an instance and classes [10], [11]. On the one hand,
some recent methods [12]–[15] have been proposed for label
noise. The representative methods usually focus on address-
ing an incomplete label. Some works [9], [16] consider weak
label cases with a semisupervised manner, and aim to com-
plete the missing labels with transductive learning. The work
in [17] addresses multilabel learning with incomplete class
assignment by taking rank strategy and group lasso technique.
The method proposed in [7] tries to address large-scale train-
ing under the missing label case. On the other hand, since
observed values of features usually tend to be affected, features
themselves are usually noisy [18], [19]. For example, images
may be corrupted and features of text may be affected by the
dull words. Some methods [20]–[24] have been proposed for
feature noise. However, in real-world data, noise is usually
hybrid, that is, mixed with both label noise and feature noise
(as shown in Fig. 1), which makes multilabel learning much
more challenging.

Although different types of noise have been separately
considered in existing works, noise contained in real-world
data are usually relatively complex or hybrid due to the
complexity of data generation. Unfortunately, most exist-
ing multilabel learning methods just consider either feature
noise or label noise. To address ubiquitous complex noise,
we jointly consider different types of noise, that is, fea-
ture noise, label noise, and hybrid noise, and accordingly,
propose a novel robust multilabel learning method called
hybrid noise-oriented multilabel learning (HNOML). First,
based on the original label vector, ideal labeling for each
sample is learned by simultaneously exploring label cor-
relation and the locality of data. Specifically, we explore
the correlation among labels by learning a label-enrichment
projection, which contains the intrinsic relationship among
labels. At the same time, graph embedding is introduced
to enforce the smoothness over the enrichment label space
according to feature space. Second, based on the ideal
enrichment label vectors, structured sparsity is employed
to alleviate the sample-specific noise and labeling noise
simultaneously.
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Our main contributions are summarized as follows. We
propose a unified robust multilabel learning framework to
address the data with hybrid noise, that is, joint feature
and label noise. The propose method, HNOML, simulta-
neously addresses feature and label noise with bi-sparsity
regularization bridged with label enrichment, where the label
enrichment explores the intrinsic correlation among differ-
ent classes, and the structured sparsity jointly imposed on
prediction loss and label matrix reconstruction error provides
the robustness for both corrupted features and noisy labeling.
Since there are multiple blocks of variables involved in our
problem, it is hard to optimize by updating all the variables
simultaneously. Therefore, we employ alternating direction
method (ADM) [25] for our problem. Extensive experiments
are conducted on diverse benchmark datasets, validating the
effectiveness of the proposed method over state-of-the-art
multilabel learning approaches.

II. RELATED WORK

According to the handling manner for label correlations,
existing multilabel learning methods could be categorized into
the following three types [2]. The first-order strategy addresses
the problem in a label-by-label manner, that is, transform-
ing the multilabel problem into multiple binary classification
tasks or its variants [26]–[28]. Obviously, this strategy ignores
correlation among labels, which is usually critical for the
success of multilabel learning. The methods belonging to
the second-order strategy usually take the label correlations
into consideration by constructing pairwise relations among
labels [29]–[31]. Although promising performances achieved,
real correlations may be more complex than second-order one.
Hence, the high-order strategy builds more complex relation-
ships among labels for multilabel learning [32]–[34], however,
they are usually computationally expensive. Recent researches
regard the above strategies as crisp manner, and advocate
that categorical labeling information is actually a simplifi-
cation of the rich semantics encoded by multilabel training
examples [35]–[37].

Recently, multilabel learning with noisy data [7], [16],
[17], [20], [21], [33], [38]–[40] has received increasing atten-
tion because of its practical application background.There
are two lines of robust multilabel learning methods. The
first line of methods focus on learning with missing
labels [7], [16], [17], [38]–[40]. The method in [17] maxi-
mizes the rank margin by exploring the group lasso reg-
ularizer which estimates the error in ranking the assigned
classes against the unassigned ones. By using graph reg-
ularization according to the similarity matrix of instances,
the method in [16] enforces the classification boundary for
each label to go across low density regions. The meth-
ods [38], [40] try to recover a complete label matrix by
taking label correlations into consideration. The second line
of multilabel learning methods concentrate on addressing
the low-quantity features. Toward feature noise, multilabel
dimensionality reduction [20], [41]–[43] or feature selection
methods [21], [44]–[48] have been proposed, which pursue the
low-dimensional spaces to maximize the dependence between
the mapped or selected features and the associated class labels.

III. PROBLEM STATEMENT

A. Preliminaries

Let X = R
D and Y = {−1,+1}C denote the feature space

and label space, where D and C are the dimensionality of fea-
ture space and number of classes, respectively. Given training
data with input–output pairs {xi, yi}Ni=1, accordingly, the input
feature matrix can be represented as X ∈ R

D×N and, the label
matrix is represented as Y ∈ R

C×N , where N is the num-
ber of samples. Based on training data, the goal is to learn a
prediction function f : X → Y , which can accurately predict a
label vector for a new coming instance. Considering the linear
model, it aims at training a prediction model W ∈ R

C×D as
follows:

y =Wxi + ei (1)

where ei is the regression error corresponding to xi. To
obtain a prediction model, the objective function often has
the following form:

min
W

N∑

i=1

L(yi, Wxi)+ λR(W) (2)

where L(·, ·) and R(·) are the loss function and regulariza-
tion term for the learned model W, respectively. Most existing
works [49], [50] usually focus on designing a reasonable
regularizer on W under different assumptions.

B. HNOML: Our Multilabel Learning Model

In this paper, we focus on robust multilabel learning with
training data containing hybrid noise. To this end, we address
this problem by using bi-sparsity regularization bridged with
label enrichment in a unified framework. Specifically, we
explore the correlation among different class labels with label
enrichment, in which an ideal enriched label matrix corre-
sponding to the feature matrix is obtained. In this way, the
labeling is improved by substituting the original label matrix
with the enriched label matrix for regression. Based on the
enriched label matrix, we impose structured sparsity on both
prediction loss and label matrix reconstruction error to simul-
taneously address feature and label noise and, thus, induce our
HNOML model.

To obtain the enriched label matrix, we introduce an explicit
mapping to explore the correlation among labels and, thus,
label noise could be alleviated. With self-representation man-
ner, the mapping B ∈ R

C×C is obtained which captures the
correlation among C different classes. For example, if “car”
and “road” are labeled simultaneously for most of training
samples, then the correlation will be strong and implied in
the enriching projection B. Then, we obtain a general form of
objective as

min
B,W

N∑

i=1

L(
Byi, Wxi

)+R(W). (3)

Based on the enriched labels, the prediction model W will
be more reasonable since more accurate relationship between
labels and features are embedded.
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(a) (b)

Fig. 1. Training data with (a) hybrid noise and (b) our model.

For learning the projection B from noisy labeling data, we
should guarantee the reasonability of the learned projection B.
Therefore, we constrain the enriched label vectors to satisfy
the following criteria.

1) The relationships between samples for enriched label
vectors and original label vectors should be basically
consistent.

2) To take advantages of the locality of data, that is, the
similar pair of instances should have the similar enriched
label vectors, graph embedding technique is introduced.

3) There may exist label noise for a few samples, hence
sample-specific reconstruction error should be taken into
consideration in label space.

According to the above analysis, to ensure the consis-
tence between the enriched label vectors and the original
label vectors, we define the following equation to measure the
inconsistence between the enriched label matrix and original
label matrix as

�(BY, Y) = ||Y− BY||2,1 (4)

where the product By is a set of learned affine measurements
of the original label vector y, which captures salient features
of the labels used to model their dependencies [51].

The structured sparsity, that is, �2,1-norm for a matrix A ∈
R

P×Q, is defined as

‖A‖2,1 =
P∑

i=1

√√√√√
Q∑

j=1

a2
ij. (5)

The structure sparsity loss can deal with the sample-specific
noise due to its row-wise sparsity property [52], [53].

Recall that our method tries to obtain enriched label vectors
in accordance with the locality of data lying in feature space,
accordingly, we employ a nearest neighbor graph on a scatter
of data points to model the geometric structure of data and
enforce the consistence between feature vectors and enriched
label vectors. Specifically, the affinity matrix is constructed
through the nearest neighbor graph as

sij =
{

exp
(
−‖xi−xj‖2

σ 2

)
xi ∈ Nk

(
xj

)
or xj ∈ Nk(xi)

0 otherwise
(6)

where Nk(x) is the set of k-nearest neighbors of the sample x.
The distance of label vectors Byi and Byj is defined as

d
(
Byi, Byj

) = ||Byi − Byj||2 (7)

which is used to measure the “dissimilarity” between the
enriched label vectors of two data points with respect to the
learned projection B. With the above defined affinity matrix
S, the consistence between enriched label vectors and feature
vectors is measured as

�(X, BY) = 1

2

N∑

j=1

N∑

i=1

sij||Byi − Byj||2sij

= Tr
(
BYLYTBT)

(8)

where Tr(·) denote the trace of a matrix. L = D − S is a
Laplacian matrix, in which D is a diagonal degree matrix with
dii =∑N

j=1 sij. Based on the latent enriched label vectors, we
aim to learn a reasonable prediction model W. Therefore, we
have the objective function as

min
W,B

N∑

i=1

‖Byi −Wxi‖2 + α

N∑

i=1

‖Byi − Byj‖2sij

+ β

N∑

i=1

‖yi − Byi‖2 + γ ‖W‖2F. (9)

In this objective function, we learns the final prediction model
W and projection B jointly. Considering the sample-specific
error over both features and labels, we can rewrite the above
objective function into a more compact matrix form

min
W,B
‖(BY−WX)T‖2,1︸ ︷︷ ︸

Structured Loss

+αTr
(
BYLYTBT)

︸ ︷︷ ︸
Label Embedding

+ β‖(Y− BY)T‖2,1︸ ︷︷ ︸
Label Enriching

+ γ ‖W‖2F︸ ︷︷ ︸
Model Regularization

(10)

where the structured sparsity is introduced. It is notewor-
thy that, beyond label enriching to alleviate label noise, the
structured sparsity also provides robustness for the model.
Specifically, the structured sparsity imposed on the first term
addresses the sample-specific feature noise, while the struc-
tured sparsity on third term is used to resolve the sample-
specific label noise.
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For the first term in our model, since we consider the
enriched label matrix BY as the ideal labeling, the struc-
tured sparsity loss is employed to introduce the robustness
for the sample-specific outliers instead of feature-specific
error [54], [55]. The second term explores the manifold of
data, that is, the distance of a pair of enriched label vectors
will be small if the pair of samples are similar in the fea-
ture space. The third term enforces the consistence between
the enriched label vectors and the original label vectors,
simultaneously constrained with structured sparsity to handle
possible sample-specific label noise. Therefore, our objec-
tive function simultaneously explores the correlations among
classes, addresses noisy labeling, and enhances robustness for
corrupted features in a unified framework.

IV. OPTIMIZATION

There are two blocks of variables in our objective function
in (10). To optimize the problem in (10), we adopt alter-
nating direction minimizing strategy and divide the objective
function into two subproblems, that is, W-subproblem and
B-subproblem. The optimization for them are as follows.

W-Subproblem: To update W, we fix B and should solve
the subproblem with respect to W as follows:

W∗ = arg minW‖(BY−WX)T‖2,1 + γ ‖W‖2F.

Setting the derivative of the above function with respect to W
to zero, we have

∂L(W)

∂W
= 2WXDXT − 2BYDXT + 2γ W = 0

where D is a diagonal matrix with Dii =
(1/[2‖(BY−WX)T

i ‖]). W is updated by the following
rule:

W∗ = BYDXT(
XDXT + γ I

)−1
. (11)

B-Subproblem: With W being fixed, we should solve
the subproblem with respect to B and have the following
optimization problem:

B∗ = arg min
B
‖(BY−WX)T‖2,1 + αTr

(
BYLYTBT)

+ β‖(Y− BY)T‖2,1.

It is easy to show the following equations:

L (B) = ‖(BY−WX)T‖2,1 + αTr
(
BYLYTBT)

+ β‖(Y− BY)T‖2,1

= Tr
(
(BY−WX)D1(BY−WX)T)

+ αTr
(
BYLYTBT)

+ βTr
(
(Y− BY)D2(Y− BY)T)

. (12)

Setting the derivative of the above function with respect to B
to zero, the following equation is obtained:

∂L(B)

∂B
= 2BYD1YT − 2WXD1YT

+ 2αBYLYT − 2βYD2YT + 2βBYD2YT = 0

Algorithm 1: Optimization Algorithm of HNOML

Input: Training data: {xi,yi}N
i=1, and α, β, and γ .

Initialize: B = I.
while not converged do

Fix B update W ← Eq. (11);
Fix W update B ← Eq. (13);
Check the convergence conditions;

end
Output: W, B.

where D1 and D2 are the diagonal matrices with D1,ii =
(1/[2‖(BY−WX)i‖]) and D2,ii = (1/[2‖(Y− BY)T

i ‖]).
Then, we can update B by the following rule:

B∗ = (
WXD1YT + βYD2YT)

× (
YD1YT + αYLYT + βYD2YT)−1

. (13)

The alternating optimization method is carried out until con-
vergence or the maximum iteration number reached. Since
alternating minimization may get stuck in a local minimum,
a sensible initialization is usually necessary for a promising
result. Since random initialization is risky, we initialize B with
B = I which equals the sparsest correlation among labels.
The procedure for optimization HNOML is summarized as
Algorithm 1.

A. Convergence Analysis

Theorem 1: The objective function in (12) is guaranteed to
convergence with alternating direction method.

Proof: For convenience of description, we rewrite the
objective function which we should minimize as follows:

L(W, B) = ‖(BY−WX)T‖2,1 + αTr
(
BYLYT BT)

+ β‖(Y− BY)T‖2,1 + γ ‖W‖2F. (14)

Given B after the t-th iteration, that is, Bt, we have the
following inferences:

Wt+1 = arg min
W
||(BtY−WtX

)T ||2,1 + γ ||Wt||2F
⇒ Tr

((
Bt −W t+1

)
Dt

(
Bt −W t+1

))
+ γ ||Wt+1||2F

≤ Tr
((Bt −W t)Dt(Bt −W t)T

)
+ γ ||Wt||2F (15)

where Dt is a diagonal matrix with Dt
ii =

(1/[2‖(BtY−WtX)T
i ‖]). We define Bt = (BtY)T and

W t = (WtX)T for simplicity. Then, it is easy to show that

∑

i

||(Bt −W t+1
)

i||22
2||(Bt −W t)i||2

+ γ ||Wt+1||2F

≤
∑

i

||(Bt −W t
)

i||22
2||(Bt −W t)i||2

+ γ ||Wt||2F

⇒ ||
(
Bt −W t+1

)
||2,1 + γ ||Wt+1||2F

−
(
||
(
Bt −W t+1

)
||2,1 −

∑

i

||(Bt −W t+1
)

i||22
2||(Bt −W t)i||2

)
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≤ ||(Bt −W t)||2,1 + γ ||Wt||2F
−

(
||(Bt −W t)||2,1 −

∑

i

||(Bt −W t
)

i||22
2||(Bt −W t)i||2

)
. (16)

According to
√

a− (a/2
√

b) ≤ √b− (b/2
√

a) [22], we have

||
(
Bt −W t+1

)
||2,1 −

∑
i

||(Bt −W t+1
)

i||22
2||(Bt −W t)i||2

≤ ||(Bt −W t)||2,1 −
∑

i

||(Bt −W t
)

i||22
2||(Bt −W t)i||2

. (17)

Therefore, according to (16) and (17), it is not difficult to show

||
(
Bt −W t+1

)
||2,1 + γ ||Wt+1||2F

≤ ||(Bt −W t)||2,1 + γ ||Wt||2F.

Hence, we have

L
(

Wt+1, Bt
)
≤ L(

Wt, Bt). (18)

Similarly, we have

L
(

Wt+1, Bt+1
)
≤ L

(
Wt+1, Bt

)
. (19)

Based on the inequations (18) and (19), we obtain

L
(

Wt+1, Bt+1
)
≤ L

(
Wt+1, Bt

)
≤ L(

Wt, Bt).

According to the above results, Algorithm 1 is guaranteed to
converge to a local optimal solution.

B. Complexity Analysis

There are two subproblems in our optimization procedure,
that is, W-subproblem and B-subproblem. For W ∈ R

C×D and
B ∈ R

C×C, the complexity of these subproblems are O(CND+
C2N + CN2 + CD2 + D3) and O(CND+ CN2 + C2N + C3),
respectively.

V. EXPERIMENT

A. Experiment Settings

We conduct our experiments on 20 benchmark datasets of
diverse applications. All these datasets are from Mulan1 and
LEAR websites.2 Specifically, the description of features could
be found in [29] (Yeast), [4] (TMC), [5] (Emotions), [56]
(CAL500), [57] (Medical), [26] (Scene), [58] (Genbase), [59]
(Bibtex), [60] (Birds), and [61] (Corel16k001). For Arts,
Computers, Education, Entertainment, Health, Recreation, and
Reference, the detailed information could be found in [62].
For Corel5k, Pascal, and Espgame, we use DenseHue for
these image datasets. The detailed statistics information of
these datasets are shown in Table I. Some examples from
these datasets are shown in Fig. 2. Note that, label cardinal-
ity (LCard) is a standard measure of “multilabeled-ness” [1],
which indicates the average number of labels relevant to each
instance. We randomly select 2/3 of the total samples from
each dataset as training data with the remaining as test set.
Due to randomness involved, the average results with standard
deviation are reported for 30 runs.

1http://mulan.sourceforge.net/datasets-mlc.html
2lear.inrialpes.fr/people/guillaumin/data.php

(a) (b) (c)

Fig. 2. Example images used in our experiments. (a) Corel5k. (b) Pascal.
(c) Espgame.

TABLE I
STATISTICS OF DATASETS

Similarly to existing works [28], [37], five diverse met-
rics are employed for evaluation, and these metrics favor
different properties for multilabel classification. Accordingly,
we report results in terms of these diverse measures to per-
form a comprehensive evaluation. For Hamming loss, Ranking
loss, One-error, and Coverage, smaller value indicates bet-
ter classification performance, while larger value of Average
precision indicates better performance. Please refer the work
in [63] for the details of these evaluation metrics. We com-
pare our method with a number of state-of-the-art multilabel
classification methods, including binary relevance (BR) [1],
label powerset (LP), pruned sets (PS) [64], and classifier
chain (CC) [33] as the baselines, the lazy multilabel meth-
ods based on k-nearest neighbors (ML-kNN) [28], three
ensemble methods: 1) random k-labelsets (RAkEL) [32];
2) ensemble of PS (EPS) [64]; and 3) ensembles of CCs
(ECC) [33]. We also compare ours with the fast image tagging
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TABLE II
RESULTS (MEAN ± STD.) OF MULTILABEL LEARNING ALGORITHMS. ↓ (↑) INDICATES THE SMALLER (LARGER), THE BETTER. THE VALUE IN RED

AND BLUE INDICATE THE BEST AND THE SECOND BEST PERFORMANCES, RESPECTIVELY

(FastTag) method [65], ranking-based method (MLR-GL) [17],
multilabel manifold learning [37], and multilabel classifica-
tion via calibrated label ranking (CLR) [31]. CLR effectively

produces an ensemble that combines the models learned by
the conventional BR ranking and pairwise classification meth-
ods, and this ensemble technique is a well-know technique for
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TABLE III
RESULTS (MEAN ± STD.) OF MULTILABEL LEARNING ALGORITHMS. ↓ (↑) INDICATES THE SMALLER (LARGER), THE BETTER. THE VALUE IN RED

AND BLUE INDICATE THE BEST AND THE SECOND BEST PERFORMANCES, RESPECTIVELY

TABLE IV
RESULTS (MEAN ± STD.) OF ROBUST MULTILABEL LEARNING ALGORITHMS. ↓ (↑) INDICATES THE SMALLER (LARGER), THE BETTER. THE VALUE

IN RED AND BLUE INDICATE THE BEST AND THE SECOND BEST PERFORMANCES, RESPECTIVELY

robustness. We tune the parameters of our method on valida-
tion data from the set {0.001, 0.01, 0.1, 1, 10, 100, 1000}. For
the number of neighbors k in (6), we empirically set it as 5

since it is observed that the performance varies little with dif-
ferent numbers. We try to tune the parameters of compared
methods to the best performance as suggested ways.
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TABLE V
RESULTS (MEAN ± STD.) OF ROBUST MULTILABEL LEARNING ALGORITHMS. ↓ (↑) INDICATES THE SMALLER (LARGER), THE BETTER. THE VALUE

IN RED AND BLUE INDICATE THE BEST AND THE SECOND BEST PERFORMANCES, RESPECTIVELY

B. Experimental Results

1) Quantitative Results: Tables II–V show the classification
comparison of different methods on the benchmark datasets.

Since each dataset is randomly divided into training and test
parts, both the average performance and standard deviation are
reported in terms of each evaluation measure. Based on the
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3. Robustness experiments with different types of noise. The first to third columns correspond to label noise, feature noise, and hybrid noise, respectively.
(a)–(c), (d)–(f), and (g)–(i) correspond to Yeast, TMC, and Emotions, respectively.

results in Tables II and III, several observations are obtained
as follows.

1) Our method achieves the competitive performance on
all datasets. For example, HNOML performs as the best

one on CAL500 and Genbase in terms of all the five
evaluation metrics.

2) The BR method, which is well known for multilabel
classification, does not achieve promising performance.
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Fig. 4. Example classification results on Corel5k.

The possible reason is that directly decomposing
multilabel task into independent binary problems
neglects modeling interdependencies among labels.

3) Compared with BR, PS, and CC basically obtain much
better performance since these methods take the label
correlations into consideration.

4) Based on LP, RAkEL learns an ensemble of multiple LP
classifiers, and the results in Tables II and V indicate
that RAkEL improves substantially over LP with large
margin.

5) It is observed that the nearest competitors are ML-kNN
and CLR. Although their performances are slightly bet-
ter than ours on a few datasets, our performances are
more stable for different datasets. Specifically, HNOML
outperforms ML-kNN and CLR on most datasets.

We also compare our algorithm with the algorithms which
aim to handle label noise or feature noise. As shown in
Tables IV and V, ECC improves BR by passing label correla-
tion information along a chain of classifiers, which delivers a
large improvement. Our method outperforms ECC and CLR on
most datasets, although ECC adopts computationally expen-
sive ensemble learning technique for robustness and CLR
solves the problem by calibrating label ranking. Our hybrid
noise-oriented algorithm also clearly outperforms the methods
for label noise, that is, FastTag and MLR-GL, which validates
the advantage of jointly addressing different types of noise.
Note that MLR-GL is based on ranking which tends to cor-
rectly label the top-ranked classes, hence it usually performs
well in terms of One-error.

2) Robustness Results: To evaluate the robustness of the
proposed method for different types of noise, we demon-
strate the performances of all methods with respect to different
types of noise and degrees on Yeast, TMC, and Emotions as
shown in Fig. 3. Specifically, three types of noise are used:
1) label noise; 2) feature noise; and 3) hybrid noise. To sim-
ulate label noise, we refer to the work [9] to randomly set
positive labels (+1) to negative (−1) with the ratio of selected
samples from 0% to 40% (0–0.4). For feature noise, simi-
lar to the work [66], we generate the error (noise) matrix E
with a parameter (δ = 0.5) to control the noise magnitude.

TABLE VI
COMPARING WITH METHODS EXPLICITLY DEALING WITH FEATURE

NOISE, WHERE THE NOISE RATIO IS FROM 0.00 TO 0.20. THE

PERFORMANCE IS EVALUATED IN TERMS OF HAMMING LOSS

Then, we add the generated error to the selected samples
with the ratio from 0% to 20% (0–0.2). For hybrid noise,
we directly combine the above two types of noise with the
ratio from 0% to 20% (0–0.2). For different types of noise,
although the performance of our method is slightly lower than
ML-kNN at the beginning (low noise degree), much better
performance is achieved for heavily noisy data. It is notewor-
thy that our method is rather stable even for the training data
with hybrid noise, which empirically validates the robustness
of our algorithm for complex noise.

Furthermore, we also compare ours with robust multitask
learning with least squares loss [24] and robust multitask fea-
ture learning [23], which explicitly deal with feature noise.
We present the results with different degrees of feature noise
on Tables VI and VII, which further validate the robustness
of our method.

3) Results Visualization: As shown in Fig. 4, we present
some example results by our algorithm on Corel5k, where
the labels in green and in gray indicate the successfully and
unsuccessfully predicted labels, respectively. For the failed
examples, we find that the number of images containing
the unsuccessfully predicted labels is usually very small.
In addition, it is observed that these objects corresponding
to unsuccessfully predicted labels are usually very small.
We visualize the label enrichment matrix B on Scene and
Emotions to investigate the discovered correlations among
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TABLE VII
COMPARING WITH METHODS EXPLICITLY DEALING WITH FEATURE

NOISE, WHERE THE NOISE RATIO IS FROM 0.00 TO 0.20. THE

PERFORMANCE IS EVALUATED IN TERMS OF AVERAGE PRECISION

(a)

(b)

Fig. 5. Visualization of the label enrichment matrix B. (a) Scene.
(b) Emotions.

different labels. According to Fig. 5, it can be observed that
the label enrichment matrix B reasonably encodes the correla-
tions among different classes. For example, the label “filed” is
positively correlated to “mountain” but not other labels, which
is consistent with data. While for the Scene dataset, “quiet”
and “sad” are highly positively correlated while “relaxing” is
negatively correlated to “amazed” and “angry.”

4) Parameter Tuning and Convergence Experiment: Fig. 6
shows the parameter tuning of the proposed algorithm. It is
observed that the performance is relatively low with α = 0 or
β = 0, and the performance becomes much better and stable
given relatively larger values. This implies the importance of

(a) (b)

Fig. 6. Parameter tuning. (a) Label embedding. (b) Label enrichment.

(a) (b)

Fig. 7. Convergence experiment. (a) Pascal. (b) Espgame.

TABLE VIII
SUMMARY OF THE FRIEDMAN STATISTICS FF (k = 13, M = 20) AND THE

CRITICAL VALUE IN TERMS OF EACH EVALUATION METRIC (k: NUMBER

OF COMPARED ALGORITHMS; M: NUMBER OF DATASETS)

the preservation of locality in data and original label infor-
mation. Fig. 7 gives the convergence experiment, where the
results demonstrate that our method converges fast within a
small number of iterations, which further empirically proves
Theorem 1.

5) Statistical Comparisons of Multiple Classifiers: To com-
pare multiple algorithms systematically, Friedman test [67]
is employed in our experiments. Table VIII presents the
Friedman statistics FF and the corresponding critical val-
ues on each evaluation metric. According to the results in
Table VIII, at the significance level α = 0.05, the null hypoth-
esis of “equal” performance among these algorithms over
multiple datasets is obviously rejected in terms of each metric.
Following the work [36], we also take the post-hoc test [67]
to further evaluate the relative performance among these com-
pared algorithms. Specifically, Bonferroni–Dunn test [67] is
employed by treating our algorithm as the control one. The
difference between the average ranks of our method and other
compared algorithms is evaluated with the critical difference
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(a)

(b)

(c)

(d)

(e)

Fig. 8. Comparison of the proposed method (control algorithm) with other methods using the Bonferroni–Dunn test. (a) Hamming loss. (b) Ranking loss.
(c) One-error. (d) Coverage. (e) Average precision.

(CD) defined as

CD = qα

√
k(k + 1)

6M
(20)

where k and M are the number of compared algorithms and
number of datasets, respectively. We have qα = 2.865 at the
significance level α = 0.05 and thus CD = 3.528 (k = 13, M
= 20). Accordingly, the performance between ours and other
compared algorithms could be considered obviously different
if their average ranks on all datasets differ by at least one CD.

For clarification, we illustrate the CD diagrams [67] on each
evaluation metric in Fig. 8, where the average rank of each
algorithm is marked on the axis. Basically, algorithms not con-
nected with ours in the CD diagram are considered to have
significantly different performance from the ours (control algo-
rithm). Based on Fig. 8, our algorithm achieves significantly

superior or at least comparable performance in terms of all
evaluation metrics.

VI. CONCLUSION

In this paper, we consider multilabel classification under
hybrid noisy data. To this end, we developed a robust
multilabel learning model, called HNOML. Both the label
noise and feature noise are addressed in a unified framework
by jointly utilizing label enriching and structured sparsity.
Our key idea lies in explicitly addressing feature noise and
label noise (hybrid noise) in a unified framework, rather than
only addressing missing labels as existing works. Empirical
experiments clearly demonstrate that our method performs
rather well with noisy training data, which validates the
strong robustness of our method. In the future, more com-
plex and more types of noise will be considered in our model.
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Moreover, general relationships (e.g., nonlinearity) among
labels will be explored.
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