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Abstract
In the big data era, the sizes of datasets have in-
creased dramatically in terms of the number of
samples, features, and classes. In particular, there
exists usually a hierarchical structure among the
classes. This kind of task is called hierarchical clas-
sification. Various algorithms have been develope-
d to select informative features for flat classifica-
tion. However, these algorithms ignore the seman-
tic hyponymy in the directory of hierarchical class-
es, and select a uniform subset of the features for all
classes. In this paper, we propose a new technique
for hierarchical feature selection based on recursive
regularization. This algorithm takes the hierarchi-
cal information of the class structure into account.
As opposed to flat feature selection, we select dif-
ferent feature subsets for each node in a hierarchi-
cal tree structure using the parent-children relation-
ships and the sibling relationships for hierarchical
regularization. By imposing `2,1-norm regulariza-
tion to different parts of the hierarchical classes,
we can learn a sparse matrix for the feature rank-
ing of each node. Extensive experiments on public
datasets demonstrate the effectiveness of the pro-
posed algorithm.

1 Introduction
In the big data era, we are often confronted with classifica-
tion tasks involving hundreds of classes, where there is a hi-
erarchical structure among the classes. We call this kind of
task hierarchical classification. Many real-world classifica-
tion problems can be naturally cast as hierarchical classifica-
tion [Silla and Freitas, 2011]. For example, ImageNet [Deng
et al., 2009] is an image database organized according to the
WordNet [Miller, 1995] hierarchy. These tasks become chal-
lenging when the number of classes is very large and testing
against every possible class may become computationally in-
feasible [Bengio et al., 2010]. The hierarchical class struc-
ture is important side information for classification learning.
Growing attention has been given to structured or hierarchical
classification learning in recent years. Learning algorithms
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that exploit hierarchies have been developed for activities in-
cluding lung disease classification, text categorization, visual
categorization, gene function prediction, and plant species i-
dentification [Gopal and Yang, 2015].

With the growth of big data, feature selection [Tang and
Liu, 2014; Villela et al., 2015; Wang and Guo, 2017] has re-
ceived much attention in machine learning. It aims to select a
subset of features from the original data to obtain a compact
representation of the classification task [Yang et al., 2011].
These feature selection algorithms assume that the classes
are independent of each other. In addition, they search for
a single feature subset to generate a classifier. However, it is
known that some features are useful for distinguishing some
classes, but useless for others [Freeman et al., 2013]. Thus we
should select different features for different subtasks to con-
struct an appropriate feature subset that leads to a compact
and effective classification model.

Obviously, hierarchical class information is not only bene-
ficial for training hierarchical classification models, but is al-
so helpful for selecting a feature subset for each node. How-
ever, little work has been devoted to this problem. In hier-
archical feature selection, we divide a large-scale classifica-
tion task into a set of smaller classification problems, where
each subtask uses an independent feature subset [Freeman et
al., 2013]. Freeman et al. [Freeman et al., 2011] develope-
d a method for joint feature selection and hierarchical clas-
sifier design using genetic algorithms. Song et al. [Song et
al., 2015] then proposed a feature selection algorithm for hi-
erarchical text classification. However, they did not consid-
er the dependence between different classes in the hierarchi-
cal tree, and independently selected features for each node.
Classes in a hierarchical structure have both parent-children
relationships and sibling relationships. Classes with a parent-
children relationship are similar to each other and may share
common features for classification, while distinguishing be-
tween classes with a sibling relationship may require different
features. However, these algorithms evaluate the importance
of features individually.

In this paper, we design a hierarchical feature selection
method based on recursive regularization. This algorith-
m considers the hierarchical information of the class struc-
ture. First, we model the hierarchical information for parent-
children class relationship as a hierarchical regularization.
We then use the Hilbert-Schmidt Independence Criterion (H-
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SIC) [Gretton et al., 2005] to measure the independence of
the sibling classes, and penalize the dependence between the
features selected at sibling nodes. Thus the final subsets are
similar if the nodes have a parent-children relationship, while
they are different if there is sibling relationship. The contri-
butions of this paper are summarized as follows.
• We first attempt to conduct hierarchical feature selection

by considering the hierarchical class structure of parent-
children and sibling relationships. These relationship-
s are modeled by hierarchical recursive regularization,
which is more reasonable for representing the relation-
ships between nodes than flat approaches.

• In contrast to existing flat algorithms, we model hier-
archical feature selection as a convex objective function
and explore an alternation minimization strategy to solve
the optimization problem with guaranteed convergence.

• Extensive experiments on six hierarchical datasets
demonstrate the effectiveness of our approach in terms
of efficiency and accuracy.

2 The Proposed Model
In this section, we describe the hierarchical feature selection
model with recursive regularization for tasks with hierarchi-
cal tree structure.

2.1 Hierarchical Tree Structure
A hierarchical tree is defined as a pair (D,≺), where D =
{1, 2, · · · } is the set of all classes and “≺” represents the “IS-
A” relationship, which is the subclass-of relationship with
the following properties [Kosmopoulos et al., 2015]:

(1) Asymmetry: if i ≺ j then j ⊀ i for every i, j ∈ D.
(2) Anti-reflexivity: i ⊀ i for every i ∈ D.
(3) Transitivity: if i ≺ j and j ≺ k, then i ≺ k for every

i, j, k ∈ D.
In a hierarchical tree structure,
(1) pi is the parent of node i ∈ D;
(2) S i is the set of all siblings of node i ∈ D, and |S i| is the

number of the siblings of i;
(3) Ci is the set of all children of node i ∈ D, and |Ci| is the

number of the children of i.
Table 1 describes the most frequent symbols used through-

out this paper.

Table 1: Description of symbols used throughout the article.

Symbol Meaning
pi The parent category of class i
Ci The set of child categories of class i
S i The set of sibling categories of class i
|Ci| The number of child categories of class i
|S i| The number of sibling categories of class i

2.2 Model
Let Xi ∈ Rmi×n be a data matrix, where mi is the number
of the samples in subtree of node i, and n is the numbers of

features. We use x1, x2, · · · , xmi to represent the mi samples,
xi ∈ R

n and Xi = [x1; x2; · · · ; xmi ]. Let Yi ∈ R
mi×dmax be a

class matrix, where dmax is the largest number of sub-classes.
We use yi ∈ {0, 1}dmax to represent the class of sample yi, and
Yi = [y1; y2; · · · ; ymi ].

Let ‖ · ‖F denote the Frobenius norm of a matrix, and let
‖ · ‖2,1 denote the `2,1-norm of a matrix. In the context of
hierarchies, the primary optimization problem is estimating
the parameters Wi at each node:

J = min
Wi

N∑
i=0

(‖XiWi − Yi||
2
F + λ‖Wi‖2,1), (1)

where Wi ∈ R
n×d is the feature weight matrix, the first term is

the loss item, the second term is the regularization imposed on
Wi, λ is a positive constant, and N is the number of internal
nodes.

Example 1 An example of a hierarchical class tree structure
is shown in Figure 1. From this figure, we have

(1) The parent category of class 1 is p1 = 0;

(2) The set of child categories of class 0 is C0 = {1, 2};
(3) The set of sibling categories of class 3 is S 3 = {4}.
Hierarchical feature selection should compute the feature
weight matrix Wi for each node besides leaf nodes.

Figure 1: Tree structure (h = 4).

In the hierarchical class structure, there are parent-children
relationship and sibling relationship. We impose these two
kinds of relationship as regularization terms on W to select
features.

Classes have a parent-children relationship means that they
are neighboring nodes among all hierarchical classes. We
expect that they are similar to each other and should share
common features for classification. We first introduce this
relationship in the hierarchy into the learning process by in-
corporating a recursive structure into the regularization term.
The regularization term of parent-children relationship is

N∑
i=1

‖Wi −Wpi‖
2
F . (2)

In addition, we expect the features at different sibling n-
odes to be different from each other. For example, the textural
features can identify animals, but the edge features are repre-
sentative for furniture. We measure the independence using
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a kernel dependence measure (the HSIC) by mapping vari-
ables into a reproducing kernel Hilbert space (RKHS). This
criterion measures the high-order joint moments between the
original distributions [Bach and Jordan, 2002]. We use the H-
SIC to penalize the dependence between the selected features
at sibling nodes in an RKHS.

Let Ki and Kl be kernel spaces on Wi ∈ R
n×d and Wl ∈

Rn×d, where l ∈ S i is the l-th sibling node of node i, and Wi
and Wl are the representation coefficient matrices for the i-th
node and the l-th node, respectively. Then

HS IC(Wi,Wl) = tr(KiHKlH), (3)

where Ki = WiWT
i , Kl = WlWT

l , and 1 ≤ l ≤ |S i|. H =

I− 1
n 1n1T

n ∈ R
n×n centers the matrix to have zero mean, where

1n ∈ R
n is a column vector with all elements being 1.

In the context of hierarchies, the primary optimization
problem considering the parent-children and sibling relation-
ships is formulated as

J = min
Wi

N∑
i=0

(‖XiWi − Yi||
2
F + λ‖Wi‖2,1)

+ α

N∑
i=1

‖Wi −Wpi‖
2
F + β

N∑
i=1

∑
l∈S i

HS IC(Wi,Wl),

(4)

where i = 0 indicates a root node with no parent node or sib-
ling nodes. Therefore, the value of i in the two regularization
terms starts at 1. We call this task hierarchical feature selec-
tion with recursive regularization (HiFSRR).

2.3 Optimization of HiFSRR

Because of the non-smoothness of the `2,1-norm, it is diffi-
cult to derive a closed solution to the optimization problem
in Eq. (4) directly. According to [Nie et al., 2010], this prob-
lem can be solved in an alternative way. When wi , 0 for
i = 1, · · · , d, the derivative of ||W||2,1 with respect to W is

∂(||W||2,1)
∂W

= 2DW, (5)

where D ∈ Rd×d is a diagonal matrix with the i-th diagonal
element as D j j = 1

2||w j ||2
. It can be easily verified that the

derivative in Eq. (5) can also be regarded as the derivative of
Tr(WT DW). Thus, the optimization problem is written as

J = min
Wi

N∑
i=0

(‖XiWi − Yi||
2
F + λTr(WT

i DiWi))

+ α

N∑
i=1

‖Wi −Wpi‖
2
F + β

N∑
i=1

∑
l∈S i

HS IC(Wi,Wl).

(6)

The root node should be computed individually. Therefore,

Algorithm 1 Hierarchical Feature Selection with Recursive
Regularization (HiFSRR)
Input: Input data Xi ∈ R

mi×n and labels Yi ∈ {0, 1}mi×dmax ,
where i = 0, 1, · · · ,N, and N is the number of internal nodes.
To facilitate the calculation, we let dmax be the maximum
number of classes of internal nodes. Regularization parame-
ters λ, α, and β.
Output: Matrix W ∈ Rn×dmax(N+1).

1: Set t = 0 and initialize Wi ∈ R
n×dmax randomly;

2: W = [W0,W1, · · · ,WN];
3: repeat
4: for i = 0 : N do
5: Compute the diagonal matrix D(t)

i according to di
j j =

1
2‖wi

j‖2
;

6: end for
// Update the root node.

7: Update W0 by W(t+1)
0 = (XT

0 X0 + λD(t)
0 +

α|C0|I)−1(XT
0 Y0 + α

∑
i∈C0

W(t)
i );

// Update the internal nodes.
8: for i = 1 : N do
9: Update Wi by W(t+1)

i = (XT
i Xi + λD(t)

i + αI +

β
∑

l∈S i
(Ul + UT

l ))−1(XT
i Yi + αW(t)

pi );
10: end for
11: Update W(t+1) = [W0,W1, · · · ,WN];
12: t = t + 1;
13: until Convergence criterion satisfied;
14: return W;

the objective function is rewritten as

J = min
W0,Wi

‖X0W0 − Y0‖
2
F + λTr(WT

0 D0W0)

+

N∑
i=1

(‖XiWi − Yi‖
2
F + λTr(WT

i DiWi)) + α‖Wi −Wpi‖
2
F

+ β

N∑
i=1

∑
l∈S i

Tr(WiWT
i HWlWT

l H).

(7)

For the root of the tree, by setting the derivative of Eq. (7)
w.r.t. W0 to 0, we have

∂J
∂W0

= 2XT
0 (X0W0 − Y0) + 2λD0W0 − 2α

∑
i∈C0

(Wi −W0)

= (2XT
0 X0 + 2λD0 + 2α|C0|I)W0 − 2XT

0 Y0 − 2α
∑
i∈C0

Wi

= 0,
(8)

where i is the i-th child of root node C0, and |C0| is the number
of all children of root node. Therefore, we have

W0 = (XT
0 X0 + λD0 + α|C0|I)−1(XT

0 Y0 + α
∑
i∈C0

Wi). (9)
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Let Ul = HWlWT
l H. By setting the derivative of Eq. (7)

w.r.t. internal node Wi to 0, we have
∂J
∂Wi

= 2XT
i (XiWi − Yi) + 2λDiWi + 2α(Wi −Wpi )

+ β
∑
l∈S i

(Ul + UT
l )Wi

= (2XT
i Xi + 2λDi + 2αI + β

∑
l∈S i

(Ul + UT
l ))Wi

− 2XT
i Yi − 2αWpi

= 0.

(10)

Finally, we have

Wi = (XT
i Xi + λDi + αI + β

∑
l∈S i

(Ul + UT
l ))−1(XT

i Yi + αWpi ).

(11)
The HiFSRR algorithm is formulated in Algorithm 1. With

this algorithm, the weight vector W = [W0,W1, · · · ,WN] is
obtained. We sort the n features for the i-th node according
to ||wi j||F( j = 1, · · · , n) in the descending order and select the
top ranked subsets at this node, where i = 0, · · · ,N and N is
the number of internal nodes.

2.4 Convergence Analysis
Algorithm 1 monotonically decreases the value of the objec-
tive function for the problem in Eq. (6) in each iteration, and
converges to the global optimum of the problem. The `2,1-
norm minimization problem has been studied and the conver-
gence has been proved in [Nie et al., 2010]. The following
experiments also show that the proposed algorithm converges
quickly on Cifar and SUN datasets. We find the same phe-
nomenon on other datasets.
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Figure 2: Convergence curves of the objective function value.
(a) Cifar; (b) SUN.

Figure 2 shows the convergence curves of all the dataset-
s, which shows that the objective function value decreases
monotonically and converges within no more than ten itera-
tions for all datasets.

3 Experiments
In this section, we introduce the datasets used in our experi-
ments. We then analyze the parameter sensitivity and report
effectiveness of regularization terms. Finally, we compare the
proposed algorithm with some state of the art techniques.

3.1 Datasets
The experiments use protein and image datasets to test the
proposed algorithm. All these tasks have the information
of class hierarchy. Two protein tasks include: F194 [Wei
et al., 2015] and DD [Ding and Dubchak, 2001]. Four im-
age tasks include: CLEF [Dimitrovski et al., 2011], CIFAR-
100 [Krizhevsky and Hinton, 2009], PASCAL Visual Object
Classes (VOC) [Everingham et al., 2010], and Scene UNder-
standing (SUN) [Xiao et al., 2010]. There are multi-label
objects in the SUN dataset. As we do not discuss this kind of
tasks in this work, we remove these multi-label samples. A
description of the datasets is given in Table 2.

Table 2: Data description.

No. Dataset Train Test Feature Node Leaf Height
1 F194 7105 1420 473 202 194 3
2 DD 3020 605 473 32 27 3
3 CLEF 8368 939 80 88 80 4
4 Cifar 50000 10000 512 121 100 3
5 VOC 7178 5105 1000 30 20 5
6 SUN 45109 22556 4096 343 324 4

3.2 Comparison Methods
So far, little research has been devoted to developing feature
selection algorithms for hierarchical classification. In [Free-
man et al., 2011], only two toy hierarchical datasets were p-
resented. In [Song et al., 2015], the algorithm was designed
specifically for hierarchical text datasets. Therefore, we com-
pare HiFSRR with the following flat feature selection algo-
rithms.

(1) Fisher Score: which depends on fully labeled train-
ing data to select features with the best discriminating abili-
ty [Duda et al., 2012].

(2) FSNM: Feature Selection via Joint `2,1-norms Mini-
mization [Nie et al., 2010] which employs joint `2,1-norm
minimization on both loss function and regularization to real-
ize feature selection across all data points.

(3) mRMR: Minimal-redundancy-maximal-relevance cri-
terion (mRMR) is an effective feature selection scheme which
avoids the difficult multivariate density estimation in maxi-
mizing dependency [Peng et al., 2005].

(4) Relief: Relief is a classical feature selection algorithm
inspired by instance-based learning [Kira and Rendell, 1992].

3.3 Parameter Setting
Features are selected individually for each internal class node
by using the parent-children and sibling relationships simul-
taneously. For example, Figure 3 shows the class hierarchical
tree for the VOC dataset. We select a feature subset for the
nodes Objects, Vehicles, Household, and Animals. We select
features on training sets and test them on test sets using 10-
fold cross validation. We report the average accuracy of SVM
at internal nodes.

In the experiments, we set λ = 1, β = 1, and α = 1 for the
CLEF dataset, and set λ = 10, β = 0.1, and α = 0.1 for the
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Figure 3: Class hierarchical tree of VOC dataset.

other datasets. We set the number of selected features to be
{48, 40, 32, 24} for F194 and DD datasets. We set the number
of selected features to be {400, 300, 200, 100} and {200, 160,
120, 80, 40} for the VOC and SUN datasets, respectively. We
set the number of selected features to be {256, 205, 154, 103,
52} for the Cifar dataset which are 50%, 40%, 30%, 20%, and
10% of the features.
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Figure 4: Parameter sensitivity evaluation on Vehicles node
of VOC dataset.

We analyze the parameter sensitivity, as shown in Figure 4.
We fix the value of one parameter (with 1) and tune the others.
Due to the space limit, we report the results on Vehicles node
of VOC dataset with fixed α and β, respectively. The results
show that our method is not sensitive to parameters.

3.4 Effectiveness of Regularization Terms
We investigate experimentally the performance of regulariza-
tion terms in our HiFSRR. We compare the effectiveness of
HiFSRR with two parameter settings using different datasets.

(1) α = 1 and β = 1 mean that HiFSRR with hierarchical
relationships.

(2) α = 0 and β = 0 mean that HiFSRR without hierarchical
relationships.

Figure 5 shows the average accuracy of SVM on each node
of a dataset. The results demonstrate that the regularization
terms of parent-children and sibling relationships work well
with different numbers of selected features. The advantage of
two regularization terms is most obvious when small features
are selected.
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Figure 5: Accuracy of SVM on different nodes of VOC
dataset with different numbers of selected features. (a) Ob-
jects; (b) Vehicles; (c) Household ; (d) Animals.

3.5 Experimental Results and Discussion
First, we compare the efficiency of the four flat feature se-
lection algorithms and the HiFSRR algorithm according to
running time. We then compare the performance of different
algorithms that are dominated by SVM. Finally, we use two
large datasets, Cifar and SUN, to test the performance of our
method on large datasets.

All experiments are executed on an Intel Core i7-3770 run-
ning at 3.40 GHz with 12.0 GB memory and 64-bit Windows
7 operating system. The results presented in Table 3 demon-
strate that the HiFSRR algorithm has a significantly shorter
running time than the other algorithms except for the Fisher
algorithm. Neither FSNM nor Relief can process the Cifar
and SUN datasets with running out of memory.

Table 3: Running time (s).

Dataset Fisher FSNM mRMR Relief HiFSRR
F194 5.4 154.2 84.0 241.0 5.9
DD 1.0 16.0 45.6 61.8 1.9

CLEF 0.2 222.3 2.0 43.9 0.2
VOC 1.4 81.3 194.3 341.4 7.6
Cifar 6.0 – 391.0 – 50.1
SUN 118.1 – 34620.3 – 3529.2

We compare HiFSRR with the four flat feature selection
algorithms on two protein datasets and two image datasets.

Results on protein datasets. Comparisons of the feature
selection algorithms for the F194 and DD datasets are shown
in Table 4. We select a feature subset for each internal node of
the class hierarchical tree. The results in Table 4 give the aver-
age accuracy at each internal node using SVM. It is clear that,
in most cases, HiFSRR performs better than other approach-
es given a different number features, especially when small
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Table 4: Accuracy comparison of SVM on two protein
datasets with different numbers of selected features.

Dataset Method 48 40 32 24

F194

Fisher 0.5295 0.4950 0.4608 0.4114
FSNM 0.5750 0.5494 0.5388 0.5134
mRMR 0.5773 0.5619 0.5475 0.5111
Relief 0.4022 0.3747 0.3424 0.3246

HiFSRR 0.5765 0.5776 0.5614 0.5438
Fisher 0.6905 0.6413 0.6318 0.6146
FSNM 0.7749 0.7836 0.7591 0.7215

DD mRMR 0.7787 0.7716 0.7670 0.7388
Relief 0.6327 0.6301 0.6116 0.6057

HiFSRR 0.7791 0.7748 0.7788 0.7791

feature subsets are selected. For example, the classification
of the DD dataset with 24 features achieves good accuracy.

Results on CLEF dataset. A comparison of the feature s-
election algorithms for the CLEF dataset is shown in Table 5.
The results demonstrate that the classification results for d-
ifferent internal nodes using the HiFSRR algorithm with 40
features are generally better than those using the flat feature
selection algorithms except for Relief.

Table 5: Accuracy comparison of SVM on different internal
node of CLEF dataset.

Fisher FSNM mRMR Relief HiFSRR
Node 1 0.7498 0.7838 0.7626 0.7710 0.8096
Node 2 0.8869 0.8173 0.9008 0.9567 0.8586
Node 3 0.6754 0.7104 0.7029 0.6860 0.7645
Node 4 0.6552 0.7463 0.7043 0.6792 0.7678
Node 5 0.7019 0.6887 0.6304 0.6893 0.7062
Node 6 0.9775 0.9775 0.9674 0.9876 0.9825
Average 0.7745 0.7873 0.7781 0.7950 0.8149

Results on VOC dataset. The experimental results on
VOC dataset are shown in Figure 6. We can see from Fig-
ure 6 that the classification results for different internal nodes
using the HiFSRR algorithm are in general better than those
using the flat feature selection algorithms. The advantage of
our algorithm is most obvious when 100 features are selected.

Results on large datasets. Finally, we test our algorithm
on two large datasets. Tables 6(a) and 6(b) compare the re-
sults of the performance of the HiFSRR algorithm with the
Fisher algorithm and mRMR on the Cifar and SUN datasets,
respectively. The results demonstrate that HiFSRR algorithm
obtains superior performance in different feature subsets.

Moreover, the number of features is significantly reduced
by HiFSRR, leading to much faster classification, especially
for large datasets.

4 Conclusions and Future Work
We have proposed a hierarchical feature selection approach
based on recursive regularization to exploiting the parent-
children and sibling relationships of hierarchical class struc-
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Figure 6: Accuracy of SVM on different nodes of VOC
dataset with different numbers of selected features. (a) Ob-
jects; (b) Vehicles; (c) Household ; (d) Animals.

Table 6: Accuracy of SVM on two large datasets with differ-
ent numbers of selected features.

(a) Cifar

256 205 154 103 52
Firsher 0.5092 0.5030 0.4882 0.4707 0.4272
mRMR 0.5096 0.5043 0.4881 0.4689 0.4107
HiFSRR 0.5244 0.5185 0.5148 0.5079 0.4767

(b) SUN

200 160 120 80 40
Fisher 0.7176 0.6987 0.6657 0.6069 0.4889

mRMR 0.7220 0.7020 0.6711 0.6197 0.5103
HiFSRR 0.7343 0.7191 0.6865 0.6391 0.5346

tures. In contrast to existing feature selection approaches, we
take advantage of the hierarchical class structure, which pro-
vides significant information for classification learning. We
have also provided an efficient HiFSRR algorithm to select
different feature subsets for each node in a hierarchical tree
structure. Compared with the flat feature selection approach,
HiFSRR achieves competitive results for both classification
accuracy and computational efficiency. The current imple-
mentation of the algorithm only deals with a tree structure for
class labels in which case each node (class) has a single par-
ent. In the future, we will design feature selection approaches
for graph structures which is more general than tree structure.
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