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Abstract—Subspace clustering is an effective method that has been successfully applied to many applications. Here we propose a
novel subspace clustering model for multi-view data using a latent representation termed Latent Multi-View Subspace Clustering
(LMSC). Unlike most existing single-view subspace clustering methods, which directly reconstruct data points using original features,
our method explores underlying complementary information from multiple views and simultaneously seeks the underlying latent
representation. Using the complementarity of multiple views, the latent representation depicts data more comprehensively than each
individual view, accordingly making subspace representation more accurate and robust. We proposed two LMSC formulations: linear
LMSC (lLMSC), based on linear correlations between latent representation and each view, and generalized LMSC (gLMSC), based on
neural networks to handle general relationships. The proposed method can be efficiently optimized under the Augmented Lagrangian
Multiplier with Alternating Direction Minimization (ALM-ADM) framework. Extensive experiments on diverse datasets demonstrate the
effectiveness of the proposed method.

Index Terms—Multi-view clustering, subspace clustering, latent representation, neural networks.

F

1 INTRODUCTION

SUBSPACE clustering has been successfully used in nu-
merous applications, especially those involving high-

dimensional data [1], [2]. Existing subspace clustering ap-
proaches can be categorized into iterative methods [3], [4],
algebraic approaches [5], [6], statistical methods and spec-
tral clustering-based methods [7], [8]. Recently proposed
subspace clustering methods [9], [10], [11], [12], [13], [14]
are based on the assumption that data points are drawn
from multiple subspaces corresponding to different clusters,
where each data point can be expressed by a linear combina-
tion of the data points themselves. The general formulation
of existing subspace clustering methods is

min
Z
L(X,XZ) + λΩ(Z), (1)

where X = [x1, · · · ,xn] is the d × n feature matrix whose
columns are the samples, and λ > 0 is the tradeoff factor.
The loss function L(·, ·) and regularization term Ω(·) are
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usually defined under specific assumptions. The represen-
tative approach - Sparse Subspace Clustering (SSC) [9] -
focuses on searching for the sparsest representation from an
infinite number of possible representations based on the `1-
norm. Unlike SSC, which separately constructs the sparsest
representation for each data point, Low-Rank Representa-
tion (LRR) [10] tries to find the lowest rank representation
of all data jointly by using the structured sparsity loss. Con-
strained by graph regularization, SMooth Representation
clustering (SMR) [11] investigates theoretically the grouping
effect for self-representation based approaches. With the
reconstruction coefficient matrix Z, the affinity matrix is
obtained by S = abs(Z) + abs(ZT ), where abs(·) is the
element-wise absolute operator. Finally, with the affinity
matrix S as the input, the final clustering result is obtained
by conducting standard spectral clustering [7].

Although these subspace clustering approaches are ef-
fective, they tend to be heavily influenced by the original
features, especially when the observations are insufficient
and/or grossly corrupted. Fortunately, multi-view subspace
clustering methods [15], [16], [17] have been proposed to
overcome this issue, in which multiple views describe each
data point. The complementary information from multiple
views can benefit clustering, and the effectiveness has been
empirically proven under different multi-view constraints.
Existing multi-view subspace clustering methods usually
reconstruct the data points on the original view directly and
generate individual, view-specific subspace representations,
and generally share the following formulation:

min
{Z(v)}Vv=1

L
(
{(X(v),X(v)Z(v))}Vv=1

)
+ λΩ

(
{Z(v)}Vv=1

)
, (2)

where X(v) and Z(v) correspond to the feature matrix and
subspace representation of the vth view, respectively. Using
the above formulation, existing methods employ differen-
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t loss functions L(·, ·) and impose different assumptions
(with different regularization terms Ω(·)) to explore relation-
ships between subspace representations of multiple views.
Although these methods have achieved promising results,
they insufficiently describe data within each view, making
reconstruction using only information from one view risky.
Moreover, noise - which is ubiquitous - further increases the
difficulty in reconstruction on the original feature space.

Here we propose using a latent representation for mul-
tiple views to explore the relationships between data points
and effectively deal with noise. As discussed in [18], [19],
the underlying assumption is that multiple views originate
from one underlying latent representation, which depicts
the essence of the data and reveals the common under-
lying structure shared by different views. Based on this
assumption, we propose a novel method that we call Latent
Multi-view Subspace Clustering (LMSC). Our approach learns
a latent representation to encode complementary informa-
tion from multi-view features and produces a common
subspace representation for all views rather than that of
each individual view. More importantly, and expanding on
the linear correlation used in our previous work [20], we
further generalize our model for non-linear correlation, and
accordingly propose generalized Latent Multi-view Subspace
Clustering (gLMSC). Our method jointly learns the laten-
t representation and multi-view subspace representation
within a unified framework, which can be effectively op-
timized using the Augmented Lagrangian Multiplier with
Alternating Direction Minimization (ALM-ADM) strategy.
We conduct extensive experiments to compare our method
with the current state-of-the-art to demonstrate our model’s
performance.

The main contributions of this paper are as follows:
• Based on self-representation-based subspace clustering,
we propose a novel multi-view subspace clustering method
called Latent Multi-view Subspace Clustering (LMSC),
which can integrate multiple views into a comprehensive
latent representation.
• The automatically learned latent representation encodes
complementary information from different views and can
meet the self-expressiveness property thus it well reflects
the underlying clustering structure.
• In addition to exploring linear correlations between the
latent representation and each view, we further introduce
neural networks to explore more general relationships and
propose the generalized Latent Multi-view Subspace Clus-
tering (gLMSC) method.
• Finally, our formulation is effectively solved by using
the Alternating Direction Minimization (ADM) and our
optimization algorithm empirically reaches convergence.

The remainder of the paper is organized as follows.
Related works, including multi-view learning, multi-view
subspace-based clustering, and latent representation-based
clustering methods are briefly reviewed in Section 2. Details
of our proposed approach are presented in Section 3. In Sec-
tion 4, we present experimental results that demonstrate our
model’s performance using a variety of real-world datasets.
Conclusions are drawn in Section 5.

2 RELATED WORK

Based on the ubiquitous multi-view data, multi-view learn-
ing [21], [22], [23], [24], [25] has shown remarkable success
in a wide range of real-world applications. Most existing
multi-view clustering methods are graph-based models. One
of the early methods presented in [26] focuses on handling
two-view data. Under a matrix factorization framework, some
methods [27], [28] attempt to uncover a common represen-
tation to link different views for clustering. The multi-view
subspace clustering methods [15], [16], [17] relate different
data points in a self-representing manner on the original
view and simultaneously constrain these subspace represen-
tations of different views to exploit complementary informa-
tion. Based on spectral clustering, [29], [30] co-regularize the
clustering hypothesis of different views to enforce consis-
tence. For large-scale data, a robust, large-scale, multi-view
k-means clustering method [31] can be parallelized and
run on multi-core processors for large-scale data clustering.
Multiple Kernel Learning (MKL) can be considered a nature
way to integrate multiple views. As a result, the method
in [32] directly combines multiple kernels corresponding
to different views and validated the approach’s effective-
ness. Based on MKL, [33] further proposes to automatically
weight different views. There are some multi-view methods
focusing on other topics, e.g., dimensionality reduction [34]
and feature selection [35].

Two groups of multi-view subspace clustering methods
are most related to ours. The first employs CCA to project
multiple views onto a low-dimensional subspace and then
uses the learned representation for clustering [36], [37].
The second group are the self-representation-based meth-
ods [15], [16], [17]. Diversity-induced Multi-view Subspace
Clustering (DiMSC) [15] explores complementary informa-
tion with Hilbert-Schmidt Independence Criterion (HSIC)
under the self-representation subspace clustering frame-
work. Low-Rank Tensor Constrained Multi-view Subspace
Clustering (LT-MSC) [16] explores the high-order correla-
tion among these subspace representations. The method in
[17] unifies different views with a common indicator ma-
trix rather than a common subspace representation. These
methods reconstruct data points within each single view.
Instead, our method constructs a unified similarity matrix
for multiple views by using a latent representation, and
thus well utilizes complementarity across different views
for subspace clustering.

Under the self-representation-based subspace clustering
framework, some methods [9], [10] introduce latent repre-
sentations. Latent Space Sparse Subspace Clustering (LS3C)
[38] jointly performs dimensionality reduction and sparse
coding on sparse subspace clustering [9]. Latent Low-Rank
Representation (LatLRR) [39] is based on LRR [10] and
constructs a dictionary by jointly using observed and hid-
den data. The methodology of ours is quite different from
these work: (1) Our algorithm performs subspace clustering
with the learned common latent representation, while these
methods conduct data self-representation within each single
view. (2) The correlations among different views are linear
for these methods, while our algorithm gLMSC explores
more general correlations by neural networks. There are also
some algorithms for multi-view representation learning.
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Some approaches [18], [19], [40] explicitly learn a common
representation for multiple views as a joint optimization
problem with a common subspace representation matrix.
Generalized Multiview Analysis (GMA) [41] is an extension
of Canonical Correlational Analysis (CCA), which is de-
signed for cross-view classification and retrieval. Multiview
LSA [42] is an algorithm that can efficiently approximate
Generalized Canonical Correlational Analysis (GCCA). Be-
yond kernel technique, Deep Canonical Correlation Anal-
ysis (DCCA) [43] explores nonlinear correlation between
views with neural networks. Some recent approaches [44],
[45] aim to learn a new representation based on auto-
encoders. In contrast to these methods, which learn the
latent representation by linearly [38] or non-linearly [44],
[45] mapping the original single-view data, our method
jointly recovers the latent multi-view representation and the
mappings corresponding to different views to encode the
intrinsic complementary information.

3 LATENT MULTI-VIEW SUBSPACE CLUSTERING

In our method, subspace clustering is performed based on
the latent representation encoding complementary infor-
mation in multiple views. Specifically, given n multi-view
observations {[x(1)

i ; ...; x
(V )
i ]}ni=1 consisting of V different

views, our model aims to seek a shared multi-view latent
representation h for each data point. The underlying as-
sumption is that these different views originate from one un-
derlying latent representation. Basically, in one respect, the
information from different views should be encoded into the
learned representation. In another respect, the learned latent
representation should meet the specific task (task-oriented
goal), e.g., self-representation or subspace reconstruction.
Therefore, we consider the general objective function

I({Xv}Vv=1,H; Θ1)︸ ︷︷ ︸
information preservation

+λ S(H; Θ2)︸ ︷︷ ︸
task-oriented goal

. (3)

where H = [h1, · · · ,hn] ∈ Rk×n is the latent represen-
tation matrix. The first term I(·, ·) ensures that the latent
representation encodes information from the original views,
thus avoids the bias of the latent representation towards
the specific task. The second term S(·, ·) is the task-oriented
term. λ > 0 balances the two terms. Θ1 and Θ2 are the
parameters corresponding to I(·, ·) and S(·, ·), respectively.

Specifically, for latent multi-view subspace clustering,
which aims to explore the subspace structure based on the
latent representation, we have the following formulation:

min
θv,H,Z

LS(H,HZ) +
V∑
v=1

αvLV (Fv(H;θv),X
(v)) + λΩ(Z),

(4)
where LS(H,HZ) is the loss function for the subspace
representation. LV (Fv(H;θv),X

(v)) and Fv(H;θv) are the
reconstruction loss and underlying mapping from the la-
tent representation H to the observations for the vth view,
respectively. The tradeoff factors αv > 0 and λ > 0 are
used to control the influence of the vth view and regulariza-
tion degree of subspace representation, respectively. With
objective function (4), we can learn the latent multi-view
representation, which benefits from complementarity of all

X (1)

X(2)
P(1)P (2)

H

Fig. 1: Illustration of multi-view latent representation. Ob-
servations {X(v)}Vv=1 (V ≥ 2) corresponding to different
views are partially projected by {P(v)}Vv=1 from one under-
lying latent representation H.

views and is therefore beneficial to subspace clustering.
In our work, we propose two latent multi-view subspace
clustering (LMSC) methods: linear (l)LMSC and generalized
(g)LMSC.

3.1 Linear Latent Multi-view Subspace Clustering

We first model the correlation between the latent represen-
tation and each view by using a linear model, termed linear
Latent Multi-view Subspace Clustering (lLMSC). As shown
in Fig. 1, observations corresponding to different views can
be linearly recovered with their respective models {P(1),
..., P(V )} based on the shared latent representation hi, i.e.,
x
(v)
i = P(v)hi. Considering noise in observations, we have

x
(v)
i = P(v)hi + e

(v)
i , (5)

where e
(v)
i is the noise of the ith sample in the vth view.

To infer the multi-view latent representation, the objective
function becomes

min
P,H
LV (X,PH),

with X =

 X(1)

· · ·
X(V )

 and P =

 P(1)

· · ·
P(V )

 , (6)

where X and P are the observations and reconstruction
models concatenated and aligned according to multiple
views, respectively. The loss function LV (·, ·) is associated
with the reconstruction from the latent (hidden) represen-
tation to different views. In this way, complementary infor-
mation from multiple views is automatically encoded into
the latent representation H, making it more comprehensive
than that of each single view individually.

For the task-oriented goal (the second term in Eq. (3)),
our aim is to perform subspace clustering as in Eq. (1).
Therefore, the objective function based on latent represen-
tation H is reformulated as

min
Z
LS(H,HZ) + λΩ(Z), (7)

where the loss function LS(H,HZ) is defined based on
the self-representation-based reconstruction error. The re-
construction coefficient matrix Z is regularized with Ω(Z).
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For multi-view subspace clustering, we jointly conduct
latent representation learning in Eq. (6) and subspace clus-
tering in Eq. (7) within one unified objective function

min
P,H,Z

LV (X,PH) + λ1LS(H,HZ) + λ2Ω(Z), (8)

where λ1 > 0 and λ2 > 0 are the tradeoff parameters
used to balance the three terms. Generally, the quality of
subspace clustering is improved by a comprehensive latent
representation, while the quality of the latent representation
is ensured by the complementary information from multiple
views and the clustering structure identification. Consider-
ing outliers, the objective function of lLMSC is

min
P,H,Z,EV ,ES

‖EV ‖2,1 + λ1 ‖ES‖2,1 + λ2 ‖Z‖∗

s.t. X = PH + EV ,H = HZ + ES and PPT = I,
(9)

where EV and ES denote the errors corresponding to recon-
struction from the latent representation to each view and
subspace representation, respectively. The subspace repre-
sentation is ensured to be low-rank with matrix nuclear
norm || · ||∗. The `2,1-norm || · ||2,1 enforces columns of a
matrix to be zero [10]. The definition of `2,1-norm used for

a matrix (A) is: ‖A‖ 2,1 =
q∑
j=1

√
p∑
i=1

A2
ij with A ∈ Rp×q . It

is robust to outliers due to its underlying assumption that
the corruptions are sample-specific. The projection matrix
P is constrained to avoid H being pushed arbitrarily close
to zero, since rescaling H/s and Ps (s > 0) preserves
the same loss. For our objective function, the first term
ensures that the latent representation H is comprehensive,
while the second term relates data points with subspace
representation. The last term finds the lowest rank subspace
representation and prevents a trivial solution. Note that our
model holds the robustness from: (1) complementary infor-
mation in different views enhances robustness compared to
each single view, subsequently improving clustering; (2) the
structured sparsity regularization with the `2,1-norm on the
error handles outliers well compared to the Frobenius norm.

To ensure that the outliers are consistent with the errors
ES and EV , we vertically concatenate them along column.
This enforces ES and EV to be with the same pattern of
column-wise sparsity [46]. Accordingly, the final objective
function of our lLMSC is formulated as

min
P,H,Z,EV ,ES

‖E‖2,1 + λ ‖Z‖∗
s.t. X = PH + EV , H = HZ + ES ,

E = [EV ; ES ] and PPT = I.

(10)

In our model, only one parameter λ > 0 is involved
to balance the reconstruction error and regularization on
subspace representation.

3.1.1 lLMSC Optimization
According to the objective function of our lLMSC in Eq. (10),
we simultaneously seek the effective latent representations
from different views and obtain the affinity matrix based
on the latent representations. Since it is not jointly convex
for all the variables, we divide our objective function into
subproblems that can be efficiently solved. We employ the
Augmented Lagrange Multiplier (ALM) with Alternating

Direction Minimization (ADM) strategy [47] for our opti-
mization. To adopt the ADM strategy, the objective function
should be separable. Hence, auxiliary variable J is intro-
duced to replace Z. Accordingly, the following problem,
which is equivalent to Eq. (10), is proposed:

min
P,H,Z,EV ,ES ,J

‖E‖2,1 + λ ‖J‖∗
s.t. X = PH + EV , H = HZ + ES ,

E = [EV ; ES ], PPT = I and J = Z.

(11)

To solve the above objective function, we minimize the
following ALM problem:

L(P,H,Z,EV ,ES ,J)

= ‖E‖2,1 + λ ‖J‖∗
+ Φ(Y1,X−PH−EV )

+ Φ(Y2,H−HZ−ES) + Φ(Y3,J− Z)

s.t. E = [EV ; ES ]; PPT = I.

(12)

Note that, for better presentation, we have the definition
as: Φ(C,D) = µ

2 ||D||
2
F + 〈C,D〉, where 〈·, ·〉 is known as

the Frobenius inner product defined by 〈A,B〉 = tr(ATB).
µ > 0 is the penalty scalar and C is the Lagrangian
multiplier. According to the Alternating Direction Mini-
mization (ADM) strategy [47], we separate our objective
into subproblems that can be efficiently optimized. Then,
the optimization is cycled over all variables while keeping
the previously updated variables fixed. Specifically, each
subproblem is solved as follows:

1. P-subproblem: With other variables fixed, we should
optimize the following problem for updating P:

P∗ = arg minPΦ(Y1,X−PH−EV )

s.t. PPT = I.
(13)

To efficiently solve the above problem, we introduce Theo-
rem 1 [48] which is used for “Wahba’s problem”, i.e., seek-
ing a (orthogonal) rotation matrix between two coordinate
systems given a set of observations.

Theorem 1. Given the objective function minR ||Q −
GR||2F s.t. RTR = RRT = I, the optimal solution is
R = UVT , where U and V are left and right singular values of
SVD decomposition of GTQ.

We can show that PT = UVT is the optimal solution for
the P-subproblem with U (V) being the left (right) singular
values of H(X + Y1/µ−EV )T . Specifically, we have

P∗ = arg minPΦ(Y1,X−PH−EV )

= arg minP

µ

2
||X−PH−EV + Y1/µ||2F

= arg minP

µ

2
||(X + Y1/µ−EV )−PH||2F

= arg minP

µ

2
||(X + Y1/µ−EV )T −HTPT ||2F .

According to Theorem 1, if P is constrained to be or-
thogonal (i.e., PPT = PTP = I), PT = UVT will be
the optimal solution. In practice, the constraint for P could
be relaxed (i.e., PPT = I, where P ∈ Rk×d, k � d).
Promising performance and convergence results validate
this relaxation.
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TABLE 1: Main notations used throughout the paper.

Model Specification

Notation Meaning

X(v) ∈ Rdv×n The feature matrix of the vth view
H ∈ Rk×n The learned latent representation matrix
Z ∈ Rn×n The subspace representation matrix

P ∈ Rk×d, d =
∑

v dv The projection from latent representation to all views
ES ∈ Rk×n, EV ∈ Rd×n The reconstruction errors
Y1,Y2, Y3 Lagrangian multipliers for constraints

W(1,v) ∈ Rd(1,v)×k The neural networks parameters
W(2,v) ∈ Rd(2,v)×d(1,v) The neural networks parameters

2. H-subproblem: To update H, the following objective
should be optimized:

H∗ = arg minHΦ(Y1,X−PH−EV )

+ Φ(Y2,H−HZ−ES).
(14)

Differentiating the objective function with respect to H and
then setting the derivative to zero, we obtain the following
equation:

AH + HB = C

with A = µPTP,B = µ(ZZT − Z− ZT + I),

C = (PTY1 + Y2(ZT − I))

+ µ(PTX + ET
S −PTEV −ESZT ).

(15)

Equation (15) is a Sylvester equation [49]. For stability,
matrix A is enforced to be strictly positive-definite with
Â = A + εI. The matrix I is an identity matrix and ε is
a small positive scalar, i.e., 0 < ε� 1.

Proposition 1. The Sylvester equation (15) has a unique solu-
tion.

Proof. There is a unique solution for Sylvester equation
ÂH + HB = C with respect to H if there is no common
eigenvalue for Â and -B [49]. Matrix Â is positive-definite,
so all eigenvalues of Â are positive, i.e., αi > 0. Matrix B
is positive semi-definite, so all eigenvalues of B are non-
negative, i.e., βi ≥ 0. Therefore, αi + βj > 0 holds for
any eigenvalues of Â and B. Accordingly, there is a unique
solution for Sylvester equation (15).

Remark. We employ the Bartels-Stewart algorithm [49] to
solve the Sylvester equation. In this algorithm, the coef-
ficient matrices are transformed into Schur forms by QR
decomposition before employing back-substitution to solve
the obtained triangular system. Note that, the proposed
model can be solved exactly under the condition PPT =
PTP = I. That is to say, when A = PTP is a positive-
definite matrix, and P is orthogonal.

3. Z-subproblem: With the other variables fixed, the sub-
space representation matrix Z can be updated by optimizing
the following objective function:

Z∗ = arg minZΦ(Y3,J− Z) + Φ(Y2,H−HZ−ES).
(16)

Accordingly, the following update rule is obtained:

Z∗ = (HTH + I)−1[(J + HTH−HTES)

+ (Y3 + HTY2)/µ].
(17)

4. E-subproblem: To update the reconstruction error E,
we need to solve the following problem:

E∗ = arg minE ‖E‖2,1 + Φ(Y1,X−PH−EV )

+ Φ(Y2,H−HZ−ES)

= arg minE

1

µ
‖E‖2,1 +

1

2
‖E−G‖2F ,

(18)

where the matrix G is constructed by vertically concatenat-
ing X − PH + Y1/µ and H − HZ + Y2/µ. The optimal
solution can be obtained by Lemma 3.2 in [10].

5. J-subproblem: With the other variable fixed, we ob-
tain the following objective function with respect to J:

J∗ = arg minJλ ‖J‖∗ + Φ(Y3,J− Z)

=
λ

µ
‖J‖∗ +

1

2
‖J− (Z−Y3/µ)‖2F .

(19)

This low-rank approximation problem can be solved with
the singular value thresholding (SVT) algorithm [50].

6. Updating multipliers: The multipliers can be updated
with the following rule:

Y1 = Y1 + µ(X−PH−EV )

Y2 = Y2 + µ(H−HZ−ES)

Y3 = Y3 + µ(J− Z).

(20)

The complete algorithm of lLMSC is shown in Algorithm 1.

Algorithm 1: Optimization algorithm for lLMSC

Input: Multi-view matrices: {X(1), ..., X(V )},
hyperparameter λ and the dimension k of
latent representation H.

Initialize: P = 0, EV = 0, ES = 0, J = Z = 0,
Y1 = 0, Y2 = 0, Y3 = 0, µ = 10−6, ρ = 1.2, ε = 10−4,
maxµ =106; Initialize H with random values.
while not converged do

Update variables P,H,Z,EV ,ES ,J according to
subproblems 1-5;
Update multipliers Y1,Y2,Y3 according to
subproblems 6;
Update the parameter µ by µ = min(ρµ; maxµ);
Check the convergence conditions:
||X−PH−EV ||∞ < ε, ||H−HZ−ES)||∞ < ε
and ||J− Z||∞ < ε.

end
Output: Z, H, P and E.



0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2018.2877660, IEEE
Transactions on Pattern Analysis and Machine Intelligence

Multi-view Information Preservation

Latent representation Subspace clusteringInput featureOriginal data Neural networks

Subspace Structure Preservation

Potential applications

H

X

X

Link graph

Attributes

Multi-View 
Reconstruction Subspace 

Representation

(1)

(2)

Fig. 2: Illustration of the proposed generalized Latent Multi-view Subspace Clustering (gLMSC). The latent representation
non-linearly encodes the information from multiple views with neural networks for uncovering the data distribution in
subspaces. Our model can also be considered as an unsupervised multi-view representation learning method, where the
learned representation could be used for other potential applications. For comparison, the dashlines indicate the linear
LMSC (lLMSC) mentioned in subsection 3.1.

Remark. Several details of our algorithm must be clarified.
(1) We employ linear projection which is effective and easy
to resolve. The non-linear correlation is addressed in the
next subsection. (2) For the P-subproblem optimization,
although orthogonal condition is needed for the strict cor-
rectness, promising performance and stable convergence
are achieved with low-dimensional projection in practice.
Moreover, with other constraints for P (e.g., ||P(:, j)||2 ≤ 1),
it can be solve with the ADMM algorithm [51]. Although it
has similar performance, the inner iteration with ADMM
makes the algorithm complexity much greater. (3) It is
not appropriate to initialize H with a zero value. In this
case, the optimal solution for H-subproblem will be zero,
and subsequent optimizations for the other subproblems
(e.g., Z-subproblem in Eq. (16)) will have trivial solutions.
Therefore, we initialize H randomly in our implementation,
and H can also be initialized with other preprocessing (e.g.,
PCA) to address the instability issue.

3.2 Generalized Latent Multi-view Subspace Clustering
lLMSC assumes a linear relationship between the latent
representation and the features from each view. Accord-
ingly, relationships between different views are also linear.
Nevertheless, in real-world applications, relationships are
usually much more complex and non-linear. The kernel trick
is regularly adopted to implicitly address the non-linearity
problem by mapping data points onto a high-dimensional
space and then solving the learning algorithms in that space.
However, the kernel is usually selected in an ad hoc man-
ner and hence suffers from generalization problem. Neural
network-based methods [52], [53] can flexibly learn highly
non-linear mappings, so here we employ neural networks
to address complex relationships between the latent repre-
sentation and the features from individual views, and the

non-linear interactions among multiple views. Accordingly,
we propose the generalized Latent Multi-view Subspace
Clustering (gLMSC) method shown in Fig. 2.

The objective function of gLMSC is formulated as fol-
lows:

min
{θv}Vv=1,H,Z

`(H,HZ) +
V∑
v=1

αvdv
(
Xv, gθv (H)

)
+ λΩ(Z)

with gθv (H) = W(k,v)f(W(k−1,v)...f(W(1,v)H)),
(21)

where `(·, ·) (corresponding to LS(·, ·) in (4)) is the loss
for subspace representation, and dv(·, ·) (corresponding to
LV (·, ·) in (4)) measures the distortion of reconstruction
from the latent representation to the observation in the vth

view. The neural network gθv (H) accounts for the non-
linear mapping, with f(·) being the activation function and
W(k,v) being the weight matrix of between the kth and
(k + 1)

th layers for the vth view. The tradeoff factor αv
is used to control the fusion portion from the vth view,
which encodes the influence of the vth view on the latent
representation. By using a three-layer network, we propose
the following objective function for gLMSC under the low-
rank constraint for subspace representation:

min
{θv}Vv=1,H,Z

1

2
‖H−HZ‖2F

+
V∑
v=1

αv
2

∥∥Xv −W(2,v)f(W(1,v)H)
∥∥2
F

+ λ ‖Z‖∗ ,
(22)

where the activation function used in our model is the tanh
function which is defined as:

f(a) = tanh(a) =
1− e2a

1 + e−2a
. (23)
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Accordingly, the corresponding derivative can be calculated
as:

f ′(a) = tanh′(a) = 1− tanh2(a). (24)

To summarize, gLMSC has the following merits. (1) Our mod-
el focuses on seeking the comprehensive common representation of
multiple views, based on which (and instead of each single view)
subspace clustering is performed. (2) Since subspace clustering is
specific for high-dimensional data, therefore, for existing methods
(e.g., [15], [16]), the data should not have low-dimensional views.
In contrast, our method is free of the restraint due to the latent
representation. (3) Inter-view correlations are implicitly encoded
by the network which non-linearly maps the latent representation
to reconstruct each view. (4) Our framework has flexibility due
to the use of different components, i.e., both the network and
the regularization terms are replaceable (for example with low-
rank/sparse/graph regularization); 5) Although our work focuses
on subspace clustering, gLMSC can be considered a general multi-
view representation learning framework.

3.2.1 gLMSC Optimization

The objective function in Eq. (22) can be solved as follows:
• Update the network parameters, i.e., W(1,v) and W(2,v).
Letting Mv = tanh(W(1,v)H) and imposing regularization
on W(1,v) and W(2,v), for the vth view, we have

LW =
αv
2

∥∥Xv −W(2,v)f(W(1,v)H)
∥∥2
F

+ γΩ(Θ), (25)

where Ω(Θ) = (
∥∥W(1,v)

∥∥2
F

+
∥∥W(2,v)

∥∥2
F

) and γ > 0 is the
tradeoff parameter for model regularization of the network.
Then, we have

W(2,v) = XvM
T
v (MvM

T
v +

γ

αv
I)−1 (26)

and

∂LW
W(1,v)

= αv

[
(1−Mv ◦Mv)◦

(WT
(2,v)W(2,v)Mv −WT

(2,v)Xv)

]
HT + γW(1,v),

(27)

where ◦ denotes element-wise multiplication, 1 is a matrix
whose elements are all ones, and 1−Mv◦Mv is the gradient
of Mv = tanh(W(1,v)H). We update W(1,v) using the gra-
dient descent (GD) algorithm. The optimization procedure
of our neural networks is summarized in Algorithm 2.
• Update H. The update of H is similar to that of W(1,v) as
follows:

∂LH
H

=
V∑
v=1

αvW
T
(1,v)

[
(1−Mv ◦Mv)◦

(WT
(2,v)W(2,v)Mv −WT

(2,v)Xv)

]
+ H(I− Z− ZT + ZZT )

with LH =
1

2
‖H−HZ‖2F

+
V∑
v=1

αv
2

∥∥Xv −W(2,v)f(W(1,v)H)
∥∥2
F
.

(28)
We update H using the gradient descent (GD) algorithm.
• Update Z. To update Z, we introduce an auxiliary variable

J and iteratively update Z, J and the multiplier Y with
ADMM as follows:

Z = (HTH + µI)−1(µJ−Y + HTH),

J = arg minJ

λ

µ
‖J‖∗ +

1

2
‖J− (Z + Y/µ)‖2F ,

Y = Y + µ(J− Z),

(29)

where it can be solved by singular value thresholding [50]
for updating J. The optimization procedure is summarized
in Algorithm 3.

Algorithm 2: Update networks with the GD algorithm

Input: Multi-view data {X(1), ..., X(V )}, latent
representation H, hyperparameter λ, learning
rate η, dimensionality k of latent representation
H, and maximal iteration number T .

Initialization: Initialize randomly W(1,v) and t = 1.
while t < T and not converged do

v = 1;
for v ≤ V do

Update Mv by Mv = tanh(W(1,v)H);
Update W(2,v) according to (26);
Update W(1,v) by W(1,v) = W(1,v) − η ∂LW

W(1,v)
;

v = v + 1;
end
Check the convergence conditions:∑V
v=1 αv ‖Xv − gθv

(H)‖2F < ε.
t = t+ 1;

end
Output: {W(1,v),W(2,v)}Vv=1.

Algorithm 3: Optimization algorithm for gLMSC

Input: Multi-view matrices: {X(1), ..., X(V )},
hyperparameter λ and the dimension K of the
latent representation H.

Initialization: µ = 10−6, ρ = 1.2, ε = 10−4, maxµ
=106; randomly initialize H and W(1,v).
while not converged do

Update the networks by using Alg. 2;
Update the latent representation H according to
(28);
Update the subspace representation Z, J and Y
according to (29);
Update the parameter µ by µ = min(ρµ; maxµ);
Check the convergence conditions:
||J− Z||∞ < ε.

end
Output: Z and H.

3.3 Complexity and Convergence
The optimization of lLMSC comprises six sub-problems. For
clarification, we define k, d, and n as the dimensionality of
the latent representation, the sum of the dimensionalities
for multiple views, and the size of data, respectively. Then,
the complexities of the six sub-problems are induced as
follows. For updating P and J (the nuclear norm proximal
operator), the complexities are O(k2d + d3) and O(n3),
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respectively. The complexity of updating H with Bartels-
Stewart algorithm [49] is O(k3). The main computational
cost of updating Z is the matrix inversion, and the complex-
ity is O(n3). The complexity of updating E and multipliers
is O(dkn+ kn2) due to the matrix multiplication. Then, the
overall complexity of lLMSC is O(k2d+d3+k3+n3+dkn+
kn2). Since the dimension of latent representation is usually
much lower than that of original views, i.e., k � d, then
the complexity is basically O(d3 + n3). For the complexity
of gLMSC, the main computational cost arises from three
sub-problems. For the meanings of d(1,v), d(2,v), please refer
to Table. 1. The complexities are O(d(1,v)kn + d2(1,v)d(2,v) +

d2(1,v)n), O(d(1,v)kn), and O(d2(1,v)k + d3(1,v)) for updating
M, W(1,v), and W(2,v), respectively. For updating H and
Z, the complexity is O(d(2,v)d(1,v)n+d2(1,v)d(2,v) +d2(1,v)n+

n3 + kn2) and O(n3), respectively. Similarly, under the
condition d1 = max({d(1,v)}Vv=1), d2 = max({d(2,v)}Vv=1),
and k � min(d1, d2), the total complexity of gLMSC is
O(d31 + n3 + d21n + d21d2 + d1d2n). It is difficult to provide
a general proof of the convergence for our algorithm. Fortu-
nately, comprehensive results on both synthesized and real
data empirically demonstrate that the proposed algorithm
has very strong and stable convergence, even with random
H initialization.

4 EXPERIMENTS

4.1 Experimental Setting

To comprehensively evaluate our model, both synthetic and
real-world benchmark datasets are employed. We conduct
experiments on synthetic data to test the effectiveness of
using multiple views compared with a single view. We also
employ datasets from diverse applications including general
images, medical images, text, and community networks.
Specifically, we use the following datasets. ADNI1 consists
of 360 samples with Magnetic Resonance (MR) and Positron
Emission Tomography (PET) images, where 93 ROI-based
neuroimaging features for each neuroimage (i.e., MRI or
PET) are extracted. Multilingual dataset Reuters [54] con-
sists of 2000 samples with 5 types of languages and the
documents are represented as a bag of words using a TFIDF-
based weighting scheme. Football2 is a collection of 248
English Premier League football players and clubs active on
Twitter. The disjoint ground truth communities correspond
to the 20 clubs in the league. Politicsie3 is a collection of Irish
politicians and political organizations assigned to seven dis-
joint ground truth groups according to their affiliation. The
two Twitter datasets are associated with 9 different views.
MSRCV1 [55] consists of 210 images from 7 classes. There
are 6 types of features extracted: CENT, CMT, GIST, HOG,
LBP, and SIFT. BBCSport4 consists of documents of sports
news corresponding to 5 topics, where for each document
two different types of features are extracted [56]. The dataset
Animals with Attributes [57] consists of 30475 images of 50
animals classes. We sampled 1/3 data points from each class
with equal interval to generate a subset with 10158 samples.

1. http://adni.loni.usc.edu/
2. http://mlg.ucd.ie/aggregation/
3. http://mlg.ucd.ie/aggregation/
4. http://mlg.ucd.ie/datasets/
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Fig. 3: Experiments to evaluate the robustness of multi-view
and single-view methods on synthetic data.

Two types of deep features (i.e., extracted with DECAF [53]
and VGG19 [58]) are used. We also extract two types of deep
features (extracted with DECAF and VGG19) for Caltech-
101 which contains 8677 images from 101 classes.

We conduct experiments on multiple benchmark dataset-
s to compare the following methods:
(1) LRRBestSV [10] performs subspace clustering with the
low-rank constraint for each single view with the best
performance reported.
(2) RMSC [56] recovers a shared low-rank transition proba-
bility matrix as the input to the standard Markov chain.
(3) DiMSC [15] enforces subspace representations of dif-
ferent views to be diverse to reduce redundancy and then
integrates them all into an affinity matrix.
(4) LT-MSC [16] employs a low-rank tensor to enforce
the consistence in high-order manner to make use of the
complementary information of multiple views.
(5) t-SVD-MSC [59] imposes a new type of low-rank tensor
constraint on the rotated tensor to capture the complemen-
tary information from multiple views.
(6) DSSC [60] proposes a deep extension of Sparse Subspace
Clustering, termed Deep Sparse Subspace Clustering (DSS-
C). We employ PCA to reduce the number of dimensions for
each view and then concatenate together all views.
(7) MLAP [61] performs multi-view subspace clustering by
concatenating subspace representations of different views
together and imposing low-rank constraint to explore the
complementarity.
(8) MSSC [62] exploits the complementarity by using a
common representation across different modalities.
(9-10) lLMSC/gLMSC are the proposed linear/generalized
Latent Multi-View Subspace Clustering algorithms.

For clustering measures, NMI (normalized mutual infor-
mation), ACC (accuracy), F-measure, and RI (Rand index)

http://mlg.ucd.ie/datasets/
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TABLE 2: Performance comparison of different clustering methods.

Datasets Methods NMI ACC F-measure RI

ADNI

LRRBestSV 6.28 ± 0.19 42.28 ± 0.21 39.90 ± 0.47 55.67 ± 0.16
RMSC 6.81 ± 0.30 42.78 ± 0.46 38.34 ± 0.63 55.65 ± 0.12
DiMSC 5.84 ± 0.12 39.17 ± 0.36 40.12 ± 0.33 50.88 ± 0.23
LT-MSC 8.63 ± 0.03 42.78 ± 0.05 39.40 ± 0.13 56.57 ± 0.00

t-SVD-MSC 4.37 ± 0.43 42.38 ± 0.59 37.76 ± 0.23 55.47 ± 0.07
DSSC 6.98 ± 0.53 44.17 ± 0.56 39.82 ± 1.20 55.50 ± 0.49
MLAP 9.68 ± 0.81 45.27 ± 0.67 39.30 ± 0.18 56.61 ± 0.02
MSSC 5.89 ± 0.45 44.45 ± 0.60 38.47 ± 0.21 55.44 ± 0.02
lLMSC 8.20 ± 0.19 45.56 ± 0.21 40.78 ± 0.40 55.50 ± 0.16
gLMSC 10.98 ± 0.15 46.67 ± 0.23 41.91 ± 0.20 57.20 ± 0.11

Reuters

LRRBestSV 20.69 ± 0.62 39.90 ± 0.31 32.55 ± 0.48 68.11 ± 0.07
RMSC 19.00 ± 0.75 39.46 ± 1.29 31.86 ± 1.40 68.05 ± 0.92
DiMSC 18.21 ± 0.33 40.00 ± 1.13 28.68 ± 0.39 67.49 ± 0.28
LT-MSC 17.93 ± 1.32 36.20 ± 1.46 28.29 ± 0.95 68.16 ± 0.53

t-SVD-MSC 24.88 ± 0.03 43.40 ± 0.68 33.17 ± 0.04 69.54 ± 0.02
DSSC 12.86 ± 1.25 42.78 ± 2.03 35.61 ± 2.19 66.90 ± 0.78
MLAP 17.04 ± 2.24 38.40 ± 1.63 32.15 ± 1.83 63.69 ± 0.52
MSSC 20.56 ± 0.63 44.50 ± 1.04 37.23 ± 1.12 62.09 ± 0.36
lLMSC 27.99 ± 0.79 47.90 ± 0.64 40.15 ± 0.50 70.08 ± 0.39
gLMSC 23.00 ± 1.00 42.70 ± 0.99 34.76 ± 1.21 65.37 ± 0.63

Football

LRRBestSV 81.07 ± 1.56 75.40 ± 2.36 66.36 ± 2.57 96.66 ± 0.15
RMSC 84.34 ± 2.04 78.55 ± 3.84 70.97 ± 4.01 97.08 ± 0.44
DiMSC 82.16 ± 1.45 75.40 ± 2.26 67.13 ± 1.19 96.74 ± 0.59
LT-MSC 84.22 ± 1.17 79.03 ± 2.01 71.32 ± 1.37 97.19 ± 0.55

t-SVD-MSC 85.65 ± 0.73 80.15 ± 0.88 73.04 ± 0.40 97.34 ± 0.22
DSSC 78.16 ± 1.38 76.81 ± 1.25 48.44 ± 2.14 92.52 ± 0.63
MLAP 85.19 ± 1.89 80.64 ± 2.36 73.35 ± 2.04 97.36 ± 0.34
MSSC 84.27 ± 0.93 84.65 ± 1.37 74.78 ± 2.16 97.50 ± 0.43
lLMSC 83.96 ± 2.08 80.24 ± 2.18 70.82 ± 1.09 97.14 ± 0.82
gLMSC 89.31 ± 2.22 86.25 ± 1.45 79.40 ± 1.40 97.97 ± 0.73

Politicsie

LRRBestSV 72.94 ± 3.37 64.94 ± 4.58 64.59 ± 3.06 85.36 ± 2.06
RMSC 70.88 ± 3.22 63.30 ± 4.17 60.61 ± 3.38 84.09 ± 1.56
DiMSC 76.63 ± 4.16 80.46 ± 3.21 77.57 ± 2.19 89.97 ± 1.19
LT-MSC 68.61 ± 1.22 64.08 ± 1.56 62.69 ± 1.53 84.59 ± 0.90

t-SVD-MSC 76.86 ± 1.55 78.86 ± 2.10 75.58 ± 1.60 89.39 ± 0.77
DSSC 75.79 ± 3.87 70.52 ± 3.99 70.05 ± 2.50 87.69 ± 1.35
MLAP 78.10 ± 2.01 71.26 ± 2.37 72.26 ± 1.34 88.66 ± 1.72
MSSC 69.27 ± 2.53 66.38 ± 2.06 63.05 ± 1.49 84.86 ± 1.01
lLMSC 81.46 ± 0.89 83.33 ± 0.94 80.66 ± 0.69 91.42 ± 0.19
gLMSC 78.65 ± 1.16 82.18 ± 1.71 78.42 ± 0.91 90.48 ± 0.22

MSRCV1

LRRBestSV 56.47 ± 2.09 66.19 ± 2.73 51.72 ± 3.56 68.34 ± 1.28
RMSC 64.99 ± 2.21 75.00 ± 4.81 62.78 ± 2.34 89.42 ± 0.69
DiMSC 62.87 ± 2.18 68.57 ± 3.92 57.92 ± 2.44 89.72 ± 1.10
LT-MSC 70.04 ± 0.13 80.00 ± 0.09 68.48 ± 0.03 91.12 ± 0.00

t-SVD-MSC 96.03 ± 0.03 98.10 ± 0.01 96.16 ± 0.03 98.93 ± 0.00
DSSC 63.34 ± 0.24 71.01 ± 0.10 63.29 ± 0.35 86.91 ± 0.25
MLAP 66.71 ± 0.52 72.86 ± 0.76 64.45 ± 0.38 89.98 ± 0.08
MSSC 63.10 ± 0.16 70.99 ± 0.22 62.87 ± 0.19 86.54 ± 0.07
lLMSC 65.34 ± 1.17 80.55 ± 1.41 65.17 ± 1.62 90.40 ± 0.20
gLMSC 75.25 ± 1.03 84.81 ± 1.27 73.80 ± 1.79 92.51 ± 0.23

BBCSport

LRRBestSV 69.02 ± 0.19 78.72 ± 0.26 76.98 ± 0.23 87.35 ± 0.13
RMSC 60.84 ± 0.75 73.72 ± 0.37 65.51 ± 0.20 92.29 ± 0.33
DiMSC 85.11 ± 0.13 95.10 ± 2.17 91.02 ± 0.14 95.72 ± 0.10
LT-MSC 77.54 ± 0.46 90.26 ± 0.73 80.16 ± 0.59 90.36 ± 0.27

t-SVD-MSC 91.82 ± 0.08 97.61 ± 0.21 94.90 ± 0.06 97.57 ± 0.11
DSSC 72.56 ± 0.32 89.43 ± 0.13 81.19 ± 0.26 92.91 ± 0.01
MLAP 71.23 ± 0.36 85.29 ± 0.15 73.53 ± 0.19 85.27 ± 0.02
MSSC 69.96 ± 0.39 79.78 ± 0.92 76.13 ± 0.51 87.27 ± 0.34
lLMSC 82.59 ± 0.81 91.07 ± 0.59 88.65 ± 0.77 94.53 ± 0.15
gLMSC 88.66 ± 0.46 96.32 ± 0.78 92.54 ± 0.26 96.49 ± 0.11

are employed to conduct comprehensively evaluation. Note
that a higher value indicates a better performance for each
metric. Since there are different accuracy definitions in clus-
tering, we specify the definition used in our experiments.
Given a sample xi, we denote the cluster and class labels as
ωi and ci, respectively, giving:

ACC =

∑N
i=1 δ(ci,map(ωi))

n
, (30)

where δ(a, b) = 1 when a = b, otherwise δ(a, b) = 0.
map(ωi) is the permutation map function, which maps the
cluster labels into class labels. n is the number of samples.
The best map can be obtained by the Kuhn-Munkres algo-
rithm.

For our algorithm, we tune the tradeoff parameter λ
from the set {0.01, 0.1, 1, 10, 100}. For simplicity, we set α1

=...= αV = α and tune α from {0.1, 0.2, · · · , 1.0} on all
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TABLE 3: Performance comparison of different clustering methods.

Datasets Methods NMI ACC F-measure RI

ANIMAL

LRRBestSV 34.59 ± 0.60 28.83 ± 0.33 16.99 ± 0.47 96.36 ± 0.31
RMSC 70.46 ± 1.84 61.58 ± 4.50 54.30 ± 4.16 97.95 ± 0.35
DiMSC 44.62 ± 0.89 32.61 ± 1.81 20.66 ± 1.10 96.30 ± 0.23
LT-MSC 41.29 ± 0.40 33.65 ± 0.67 21.65 ± 0.49 96.53 ± 0.16

t-SVD-MSC 70.66 ± 0.19 63.44 ± 0.23 54.40 ± 0.26 97.91 ± 0.01
DSSC – – – –
MLAP 69.98 ± 0.03 63.32 ± 0.06 52.61 ± 0.11 97.88 ± 0.18
MSSC 66.93 ± 0.35 59.24 ± 0.32 50.12 ± 0.15 97.22 ± 0.02
lLMSC 70.11 ± 0.25 59.86 ± 0.29 51.90 ± 0.64 97.86 ± 0.01
gLMSC 72.66 ± 0.35 64.47 ± 0.44 54.54 ± 0.37 97.97 ± 0.08

CALTECH

LRRBestSV 77.59 ± 1.23 52.58 ± 2.00 36.86 ± 1.82 97.48 ± 0.70
RMSC 81.41 ± 1.57 56.02 ± 2.10 27.35 ± 2.63 97.58 ± 0.56
DiMSC 63.72 ± 0.99 37.09 ± 1.81 25.47 ± 2.11 97.02 ± 0.34
LT-MSC 80.38 ± 1.58 56.02 ± 1.11 39.86 ± 1.26 97.59 ± 0.73

t-SVD-MSC 81.51 ± 1.40 56.60 ± 0.79 40.43 ± 1.10 97.58 ± 0.46
DSSC – – – –
MLAP 82.03 ± 1.09 57.62 ± 1.57 42.30 ± 0.77 97.57 ± 0.36
MSSC 78.14 ± 0.45 55.90 ± 0.66 42.11 ± 0.29 97.02 ± 0.07
lLMSC 76.26 ± 1.11 52.84 ± 1.30 37.72 ± 0.96 97.48 ± 0.22
gLMSC 81.63 ± 1.10 59.68 ± 0.60 41.90 ± 0.41 97.68 ± 0.28

TABLE 4: Performance comparison between single view and the learned latent representation.

Datasets Methods NMI ACC F-measure RI

ADNI

View1 10.06 ± 0.20 48.33 ± 0.34 40.42 ± 0.09 55.32 ± 0.15
View2 2.33 ± 0.16 41.50 ± 0.70 38.28 ± 0.38 54.12 ± 0.06
GCCA 1.49 ± 0.21 41.94 ± 0.37 41.43 ± 0.14 52.45 ± 0.06
DCCA 3.93 ± 0.32 37.33 ± 0.64 41.37 ± 0.25 54.08 ± 0.13

Latent(lLMSC) 10.21 ± 0.11 44.72 ± 0.51 46.58 ± 0.35 54.85 ± 0.40
Latent(gLMSC) 11.15 ± 0.39 45.00 ± 0.29 46.38 ± 0.70 56.31 ± 0.17

Reuters

View1 19.89 ± 6.56 41.74 ± 7.00 39.26 ± 4.12 51.05 ± 6.77
View2 16.64 ± 7.35 40.94 ± 6.65 34.19 ± 2.56 51.03 ± 3.21
View3 21.18 ± 8.58 42.22 ± 3.85 36.05 ± 4.04 58.56 ± 5.92
GCCA 28.18 ± 5.26 37.43 ± 4.00 33.96 ± 2.73 69.58 ± 3.68
DCCA 17.40 ± 3.57 42.67 ± 5.39 36.79 ± 3.86 54.37 ± 5.11

Latent(lLMSC) 31.21 ± 0.65 38.98 ± 2.77 39.32 ± 1.20 60.71 ± 4.02
Latent(gLMSC) 31.23 ± 4.82 42.94 ± 3.63 39.79 ± 2.92 68.76 ± 4.11

Football

View1 64.13 ± 2.31 52.82 ± 2.42 29.61 ± 2.66 85.31 ± 1.38
View2 67.21 ± 2.35 62.10 ± 2.24 38.17 ± 3.32 89.04 ± 1.07
View8 62.65 ± 2.33 50.81 ± 2.36 25.72 ± 2.45 85.93 ± 1.03
GCCA 39.87 ± 1.42 25.81 ± 2.07 12.25 ± 2.67 63.41 ± 1.44
DCCA 79.56 ± 1.99 64.19 ± 2.14 54.08 ± 2.46 94.35 ± 0.73

Latent(lLMSC) 70.61 ± 2.40 61.69 ± 3.71 44.81 ± 2.19 93.56 ± 1.17
Latent(gLMSC) 83.29 ± 1.95 70.56 ± 1.32 66.69 ± 1.72 95.56 ± 0.89

Politicsie

View1 56.47 ± 1.86 45.11 ± 1.91 48.76 ± 1.90 77.61 ± 0.76
View2 44.04 ± 2.13 43.97 ± 1.53 36.22 ± 2.86 68.10 ± 1.22
View8 18.01 ± 1.69 39.37 ± 2.05 34.33 ± 3.45 62.04 ± 1.01
GCCA 20.65 ± 2.67 52.30 ± 1.88 41.29 ± 2.09 42.60 ± 1.43
DCCA 56.19 ± 1.07 60.06 ± 1.55 49.31 ± 2.62 78.42 ± 1.23

Latent(lLMSC) 72.36 ± 2.17 67.58 ± 1.99 60.28 ± 2.00 83.81 ± 1.46
Latent(gLMSC) 74.10 ± 2.81 68.10 ± 2.72 64.86 ± 2.58 85.26 ± 1.20

MSRCV1

View1 51.95 ± 3.12 54.00 ± 5.94 47.91 ± 4.30 83.80 ± 0.41
View3 62.03 ± 0.72 70.42 ± 0.51 58.95 ± 0.85 88.39 ± 0.13
View4 53.45 ± 1.41 60.63 ± 1.69 49.79 ± 2.13 85.57 ± 1.46
GCCA 62.51 ± 2.12 69.05 ± 1.57 58.48 ± 1.64 86.89 ± 0.85
DCCA 41.20 ± 0.16 54.29 ± 0.70 38.32 ± 0.38 81.63 ± 0.06

Latent(lLMSC) 71.67 ± 1.31 80.76 ± 1.27 68.92 ± 1.76 90.64 ± 0.96
Latent(gLMSC) 72.99 ± 1.36 82.36 ± 1.41 70.15 ± 1.66 91.37 ± 0.55

BBCSport

View1 59.64 ± 17.04 64.17 ± 15.26 62.43 ± 13.46 73.73 ± 15.41
View2 23.17 ± 16.86 44.85 ± 8.47 44.47 ± 7.80 42.69 ± 12.36
GCCA 59.59 ± 7.78 75.92 ± 3.89 70.50 ± 5.57 84.92 ± 6.65
DCCA 35.52 ± 12.63 64.52 ± 6.98 48.57 ± 6.63 76.81 ± 11.54

Latent(lLMSC) 62.18 ± 12.45 66.66 ± 12.15 63.96 ± 12.18 76.72 ± 12.30
Latent(gLMSC) 76.13 ± 13.21 77.21 ± 13.68 73.32 ± 12.98 87.02 ± 11.55

datasets. The network parameter γ (for regularization) is
fixed to 0.001. For the baseline approaches, we tune all the

parameters to report their best performances according to
the authors. The dimensionality of the latent representation
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is relatively robust hence we set k = 100 for all datasets,
which results in promising performance. Due to random-
ness, we run all algorithms 30 times and report the mean
values and standard deviations.

4.2 Results on Synthetic Data

Firstly, we evaluate our algorithm in exploring multiple
views on synthetic data. In our experiment, the randomly
generated matrices are produced by independently sam-
pling elements from a uniform distribution within the range
[0, 1]. The synthetic data are from 6 subspaces/clusters
with the sample numbers corresponding to these subspaces
being {25, 30, 35, 40, 45, 50}, respectively. First, the latent
representation matrix H ∈ Rk×n is generated randomly,
with the number of dimensions k = 90 and the number
of data points n = 225. These subspaces have 10, 12, 14, 16,
18, and 20 disjoint features, respectively. Then, based on the
latent representation matrix H two views are produced with
X(v) = P(v)H + E(v). Two types of noise are considered
for E(v): E(v) = E

(v)
s + αE

(v)
g , where E

(v)
g and E

(v)
s are

global and sample-specific noises, respectively. For E
(v)
s , we

randomly select a subset of columns (20 in our experiments),
and set the other columns to zeros. For E

(v)
g , we multiply it

with a scalar 0 < α < 1 to tune the noise degree. In Fig.
3(a), benefiting from the complementarity of multiple views
our approach obtains much better performance compared
to that using a single view of features with different degrees
of noise. In Fig. 3(b), we provide a visualization of affinity
matrices for both single view and multiple views with
α = 0.5. The affinity matrix of multiple views reveals the
underlying cluster structure much better than using a single
view.

4.3 Results on Real Datasets

We next test our model on diverse real-world applications
including medical image/general image clustering, commu-
nity detection, and text clustering. Tables 2-3 present the
clustering results of different clustering approaches. From
Tables 2-3, the following observations can be made: (1)
overall, lLMSC achieves very competitive and stable per-
formance compared to most baselines. Taking the datasets
Reuters and Politicsie for example, lLMSC outperforms
all the traditional methods; (2) by exploring the general
correlation with a neural network, gLMSC significantly im-
proves lLMSC on 6 out of 8 datasets. For example, the NMI
improvements of gLMSC over lLMSC are about 5.3% and
6.1% on Football and BBCSport, respectively; The potential
reasons why gLMSC does not always outperform lLMSC
may be: first, for some cases (e.g., Reuters: each document
is associated with multiple types of languages), the linear
model is enough to model the correlations among different
views; second, although gLMSC is more general than lLM-
SC, there is no global optimal solution guaranteed for both
gLMSC and lLMSC; (3) although the performance of our
method is not always top, the performance is rather robust
across different datasets, while the performance of some
methods is very unpredictable and variable. For example,
MLAP achieves the promising performance on ADNI and
CALTECH. However, on Reuters and BBCSport, MLAP
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Fig. 5: Results of our method when using different parame-
ters: λ (top row) and k (bottom row).

does not perform very well; (4) we also compared our al-
gorithm with Deep Sparse Subspace Clustering (DSSC) [60]
and t-SVD-MSC [59], while the performance of gLMSC is
consistently better than them. For example, the performance
improvements over t-SVD-MSC are about 6.1% and 3.3%
on the two community datasets, i.e., Football and Politicsie,
in terms of accuracy. The method t-SVD-MSC emphasizes
the consistence over different views due to the low-rank
constraint, while it is a challenge for it to balance the con-
sistence and the complementarity. While our algorithm can
handle this issue due to the flexible encoding of the intrinsic
information from different views; (5) the performance of
single-view methods with the best view is generally worse
than multi-view methods, confirming that it is useful to
incorporate multiple views.

Is the latent representation good? To investigate the
improvement gains of our approach, we compare the la-
tent representation of our algorithm, Generalized Canonical
Correlational Analysis (GCCA) [63], Deep Canonical Cor-
relation Analysis (DCCA) [43] and features of each single
view by conducting k-means over them. As shown in Table
4, the performance using our latent representation is gen-
erally better than those using single-view features. This is
empirical proof of the added value of the latent representa-
tion compared to the original features. Although nonlinear
correlations are involved in the CCA-based algorithms, i.e.,
DCCA and GCCA, the performances are not promising
compared with ours. One of the main possible reason is that
the representation learning and clustering are separated for
these algorithms, thus the learned representations are not
guaranteed to be suitable for clustering. Furthermore, we
visualize the features of each view and the latent representa-
tion using t-Distributed Stochastic Neighbor Embedding (t-
SNE) [64] on MSRCV1. As shown in Fig. 4, the visualization
is consistent with the clustering results shown in Table
4. Specifically, Fig. 4(c)(corresponding to view3) and (d)
(corresponding to view4) more clearly reveal the underlying
cluster structure, and the corresponding clustering perfor-
mances are also much better than other views. Fig. 4(g) and
(h) (corresponding to latent representation) further validate
the advantage of our model, since the clusters are more
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(a) View1:CENTRIST (b) View2:CMT (c) View3:GIST (d) View4:HOG

(e) View5:LBP (f) View6:SIFT (g) Latent Representation (lLMSC) (h) Latent Representation (gLMSC)

Fig. 4: Visualization of different views and latent representation with t-SNE on the MSRCV1 dataset.

compact and separable than those of the original features
corresponding to different views.

Parameter tuning and convergence. Fig. 5 shows the
results of our method using different parameters (taking
BBCSport as an example). The performances of our lin-
ear and generalized models are both relatively stable and
promising, as shown by the results achieved by setting λ in
a relatively large range. The bottom of Fig. 5 presents model
performance with respect to dimensionality (k) of the la-
tent representation. Promising performance can be expected
with relatively low dimensionality. Moreover, while gLMSC
needs a latent representation of higher dimensionality than
that of lLMSC, its performance is generally better because
the more general correlation is addressed. Fig. 6 empirically
shows that our algorithms converge within a small number
of iterations.
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Fig. 6: Convergence of our method. For a better view, the
plots are normalized into the range [0, 1].

5 CONCLUSIONS AND DISCUSSION

Here we introduce the latent representation into multi-
view subspace clustering. Our model effectively encodes
complementarity in multiple views for subspace clustering
under the assumption - each single feature view origi-
nates from one comprehensive latent representation. This
is essentially different from existing multi-view subspace
clustering approaches that perform self-representation di-
rectly within the single view or simply project each view

of feature to a common space. The latent representation
and the self-representation-based clustering complement
each other. More importantly, by using a neural network-
based approach to learn non-linear mappings, our model
can handle more general correlations between the latent
representation and each feature view. Experiments on both
synthetic and benchmark datasets verify the clear advan-
tages of the learned latent representation for multi-view
subspace clustering compared to the state-of-the-art multi-
view clustering methods.

Our model is able to flexibly explore the complementari-
ty among multiple views for subspace clustering. However,
there are several issues that require further clarifications and
possible future investigations. Firstly, since graph (of the
size n×n) is involved for existing subspace clustering meth-
ods which leads to computational cost matrix operations.
The time complexities of these subspace based clustering
methods are generally in the same order. Specifically, SVD
decomposition and matrix inversion are employed in our
method which makes our algorithm with high computation-
al cost. In the future, sampling technique and binary repre-
sentations [65] will be considered to accelerate the clustering
speed. Second, the quality differences for different views are
not considered. The performance could be degraded, when
low-quality views are more dominating.
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