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Abstract—The classification of high-dimensional tasks remains4
a significant challenge for machine learning algorithms. Feature5
selection is considered to be an indispensable preprocessing step in6
high-dimensional data classification. In the era of big data, there7
may be hundreds of class labels, and the hierarchical structure of8
the classes is often available. This structure is helpful in feature9
selection and classifier training. However, most current techniques10
do not consider the hierarchical structure. In this paper, we design11
a feature selection strategy for hierarchical classification based on12
fuzzy rough sets. First, a fuzzy rough set model for hierarchical13
structures is developed to compute the lower and upper approx-14
imations of classes organized with a class hierarchy. This model15
is distinguished from existing techniques by the hierarchical class16
structure. A hierarchical feature selection problem is then defined17
based on the model. The new model is more practical than existing18
feature selection approaches, as many real-world tasks are natu-19
rally cast in terms of hierarchical classification. A feature selection20
algorithm based on sibling nodes is proposed, and this is shown21
to be more efficient and more versatile than flat feature selection.22
Compared with the flat feature selection algorithm, the compu-23
tational load of the proposed algorithm is reduced from 98.0%24
to 6.5%, while the classification performance is improved on the25
SAIAPR dataset. The related experiments also demonstrate the26
effectiveness of the hierarchical algorithm.27

Index Terms—Feature selection, fuzzy rough sets, granular com-28
puting, hierarchical classification.29

I. INTRODUCTION30

IN THE era of big data, we can observe the following new31

trends in classification learning.32

1) The number of samples continues to increase. We now33

have abundant datasets for model training.34
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2) The number of features used to describe the samples has 35

increased from tens to hundreds of thousands, resulting in 36

high-dimensional tasks. 37

3) The number of class labels is also becoming larger and 38

larger. There are several hundred class labels in some 39

classification tasks, and the class labels form a hierarchical 40

structure, e.g., large-scale web categorization [1], image 41

recognition [2], and gene classification [3]. 42

The number of features is a crucial factor affecting the perfor- 43

mance of a classifier. Feature selection aims to select a subset 44

of features to decrease the time complexity, reduce the stor- 45

age burden, and improve the generalization ability of classifica- 46

tion [4]–[6]. This has a significant impact on both the running 47

time and accuracy of the subsequent processing steps. Thus, it is 48

highly desirable to develop effective algorithms that can select 49

informative features from the raw data [7]. 50

Various feature selection algorithms have been developed to 51

select features for binary classification or multiclass tasks. How- 52

ever, there are complex classification structures in real-world 53

applications, where the class labels to be predicted are hierar- 54

chically related [8]. Many real-world knowledge systems use 55

a hierarchical scheme to organize their data, particularly Ima- 56

geNet, Wikipedia [9], Internet web content, biological data [10], 57

geographical data [11], and text data [12]. Hierarchical classi- 58

fication is an increasingly popular method that addresses the 59

problem of classifying items into a hierarchy of classes [13]. In 60

2009, a workshop was organized for the PASCAL 2 large-scale 61

hierarchical text classification challenge [14]. This workshop 62

discussed the problems and challenges of large-scale hierarchi- 63

cal classification. 64

It has been reported that hierarchical methods produce better 65

performance than flat classification techniques [15], [16]. Deng 66

et al. [17] studied large-scale categorization using a category 67

distance measure based on the WordNet hierarchy. They derived 68

a hierarchy-aware cost function for classification and obtained 69

more informative classification results. Moreover, a hierarchi- 70

cal structure makes it feasible to apply greedy algorithms for 71

large-scale classification. Wei et al. [18] adapted a greedy algo- 72

rithm for multilabel classification on tree-structured hierarchies 73

using subtree optimization. The aforementioned methods are 74

based on a predefined hierarchy. Some other studies [19] have 75

focused on the construction of a hierarchical structure to deal 76

with large-scale classification. For instance, a visual hierarchi- 77

cal structure has been constructed to organize large numbers 78

of classes, and a learning algorithm was developed to train hi- 79

erarchical classifiers [20]. These hierarchical approaches can 80
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achieve competitive results in terms of both classification accu-81

racy and computational efficiency.82

A hierarchical class structure provides some external knowl-83

edge of the classes and is helpful not only for classifier training84

but also feature selection. However, few feature selection ap-85

proaches for hierarchical class structures have been proposed.86

Hierarchical feature selection can split the problem into a set87

of smaller classification problems, each using its own feature88

set [21]. Freeman et al. [22] presented a method for joint feature89

selection and hierarchical classifier design using genetic algo-90

rithms, whereas Song et al. [23] proposed a feature selection91

method for hierarchical text classification. In these works, each92

child classification selects the best features considering the hi-93

erarchical class structure. They improve the accuracy of each94

classification task, but also reduce the feature dimension.95

The theory of fuzzy rough sets is an effective mathematical96

tool for describing the inconsistency between attributes and de-97

cisions, and it is widely used in feature selection and attribute98

reduction [24]–[26]. In recent years, research on fuzzy rough99

sets can be categorized into two classes. First, many researchers100

have discussed the expansion of the fuzzy rough set model. In101

2010, Chen et al. [27] introduced the concept of local reduc-102

tion with fuzzy rough sets for a decision system. In 2011, Hu103

et al. [28] integrated kernel functions with fuzzy rough set mod-104

els and proposed two types of kernelized fuzzy rough sets. In105

the second class, several different attribute reduction and feature106

selection methods using fuzzy rough sets have been proposed107

for different types of datasets [29]. For example, Zhao et al. [30]108

handled noisy datasets using fuzzy rough sets by proposing a109

robust method of dimension reduction. Another example is the110

application to decision systems with both symbolic and numer-111

ical conditional attributes by composing classical rough set and112

fuzzy rough set models [31]. In 2015, Chen et al. [32] studied113

the dynamic relation between granules, because data from dif-114

ferent applications may evolve with time, that is, the objects,115

attributes, and attribute values may change dynamically.116

The models and applications of fuzzy rough sets have been117

discussed in a comprehensive manner in recent decades [33]–118

[35]. These studies have focused almost exclusively on datasets119

with binary classification or multiclass tasks [36]–[38]. Few120

studies have considered datasets with high-dimensional classes,121

especially those with hierarchical class structures. In the era of122

big data, there may be hundreds of class labels, and the hier-123

archical structure of the classes is often available. This hierar-124

chical data structure reflects the relationship among classes and125

is helpful for feature selection and classifier training. However,126

fuzzy rough set-based feature selection using the hierarchical127

structure has not been systematically studied.128

In this paper, we propose a fuzzy rough set model for hi-129

erarchical classification and develop the corresponding feature130

selection algorithm. First, we embed the hierarchical structure131

into fuzzy rough sets and redefine the lower and upper approx-132

imations using an inclusive strategy and a sibling strategy for133

the hierarchical classification. The properties of the fuzzy rough134

sets for hierarchical classification are discussed. Second, we dis-135

cuss the feature evaluation and feature searching strategies for136

hierarchical feature selection. In hierarchical classification, we137

can reduce the search domain for the nearest sample using the138

predefined class hierarchy. This analysis provides a new view- 139

point to extend fuzzy rough sets in hierarchical applications. 140

Finally, a feature selection algorithm is designed for the hierar- 141

chical feature selection problem. We use sibling nodes to com- 142

pute the nearest samples, resulting in an efficient algorithm de- 143

sign. Moreover, some resampling strategies are also considered 144

to accelerate the algorithm. Support vector machines (SVM), 145

k-nearest neighbors (KNN), naive Bayes (NB) classifiers, and 146

three hierarchical measures are used to test the performances 147

of flat and hierarchical feature selection. We report the results 148

of several experiments to demonstrate that the proposed algo- 149

rithm outperforms the flat algorithms in terms of efficiency and 150

accuracy. 151

This paper is organized as follows. In Section II, we present 152

some preliminaries on fuzzy rough sets. Then, we introduce 153

the model of fuzzy rough sets for hierarchical classification in 154

Section III. We design a hierarchical feature selection algo- 155

rithm in Section IV. In Section V, we introduce the evaluation 156

measures for hierarchical feature selection algorithms. In Sec- 157

tion VI, we present experimental results and analyze the effec- 158

tiveness of the hierarchical feature selection algorithm. Finally, 159

in Section VII, we conclude this paper. 160

II. PRELIMINARIES 161

In this section, we review the notation for rough sets and 162

fuzzy rough sets. 163

A. Rough Sets 164

Decision systems are fundamental in data mining and ma- 165

chine learning. Let I = 〈U,C,D〉 be a decision system, where 166

U is a nonempty set of finite objects (the universe), C is a 167

set of conditional attributes, and D is a set of decision at- 168

tributes. For each a ∈ C ∪ D, Ia : U → Va . Set Va is the value 169

set of attribute a, and Ia is an information function for each 170

attribute a. 171

R is an equivalence relation on U calculated by 172

IND(R) = {(x, y) ∈ U × U |∀a ∈ R, a(x) = a(y)} (1)

where x and y are indiscernible by attributes from R when 173

(x, y) ∈ IND(R). The equivalence relation partitions the uni- 174

verse into a family of disjoint subsets called equivalence classes. 175

The equivalence class including x is denoted by [x]R . We call 176

AS = 〈U,R〉 an approximation space. For any X ⊆ U , two sub- 177

sets of objects, called lower and upper approximations of X in 178

〈U,R〉, are defined as [39] 179

RX = {[x]R |[x]R ⊆ X} (2)

RX = {[x]R |[x]R ∩ X 
= ∅}. (3)

If RX 
= RX , X is a rough set in the approximation space; 180

otherwise, we say that X is definable. 181

The rough set theory described above can deal with datasets 182

that contain discrete values [39], [40]. However, most datasets 183

contain numerical attributes. The model of fuzzy rough sets is 184

an extended model to address this problem [41]. The theory of 185

fuzzy rough sets offers an effective way to model the vagueness 186

and imprecision presented in numerical data [28]. 187
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B. Fuzzy Rough Sets188

Let U be a nonempty and finite set of objects, and R be189

a fuzzy binary relation on U . We call FAS = 〈U,R〉 a fuzzy190

approximation space, where R is a fuzzy equivalence relation.191

∀x, y, z ∈ U , we have the following:192

1) reflexivity: R(x, x) = 1;193

2) symmetry: R(x, y) = R(y, x); and194

3) min–max transitivity: miny (R(x, y), R(y, z)) ≤ R(x, z).195

More generally, we say that R is a fuzzy T -equivalence re-196

lation if for ∀x, y, z ∈ U , R satisfies reflexivity, symmetry, and197

T -transitivity, that is, T (R(x, y), R(y, z)) ≤ R(x, z).198

Given fuzzy approximation space FAS = 〈U,R〉 and fuzzy199

subset X ⊆ U , fuzzy rough sets can be summarized as the fol-200

lowing four operators [42]:201

RS X(x) = inf
y∈U

S(N(R(x, y)),X(y))

RT X(x) = sup
y∈U

T (R(x, y),X(y))

RϑX(x) = inf
y∈U

ϑ(R(x, y),X(y))

RσX(x) = sup
y∈U

σ(N(R(x, y)),X(y)), (4)

where T , S, ϑ, and σ denote the fuzzy triangular norm (T -norm),202

fuzzy triangular conorm (T -conorm), T -residuated implication,203

and its dual, respectively, and N is a negator. The standard204

negator is defined as N(x) = 1 − x. Several fuzzy operators205

and their properties were introduced in [43]. Some typical fuzzy206

operators are listed as follows: SM (a, b) = max(a, b),207

TM (a, b) = min(a, b), ϑM (a, b) =

{
1, a ≤ b

b, a > b.
,

σM (a, b) =

{
0, a ≥ b

b, a < b.
.

Let I = 〈U,C,D〉 be a decision system, where U is a universe208

of objects, C is a nonempty set of conditional attributes with209

numerical values, and D is the decision attribute that divides the210

samples into subset {d1 , d2 , . . . , dl}. For all x ∈ U and if R is211

a fuzzy similarity relation, then we have212

di(x) =

{
0, x /∈ {di}
1, x ∈ {di}

. (5)

Then, the fuzzy rough approximations are computed as213

RS di(x) = inf
y /∈di

(1 − R(x, y))

RT di(x) = sup
y∈di

R(x, y)

Rϑdi(x) = inf
y /∈di

(
√

1 − R2(x, y))

Rσdi(x) = sup
y∈di

(1 −
√

1 − R2(x, y)). (6)

The lower and upper approximations use an equivalence re-214

lation to granulate the universe and generate Boolean elemental215

granules [28] in rough sets. A fuzzy rough set [41] is defined by216

TABLE I
DESCRIPTION OF SYMBOLS USED THROUGHOUT THIS PAPER

Fig. 1. Example of a tree-based hierarchical class structure.

two fuzzy sets, fuzzy lower and upper approximations defined 217

in (6) that are obtained by extending the corresponding crisp 218

rough set notions defined previously in (2) and (3) [24]. 219

III. FUZZY ROUGH SETS FOR HIERARCHICAL CLASSIFICATION 220

A number of learning algorithms have been developed based 221

on fuzzy rough sets [44], [45]. Large-scale data are not only 222

a rich source of information but also produce complex class 223

structures, such as hierarchies. It is interesting and challenging 224

to exploit such structures in modeling. 225

A. Hierarchical Classification 226

In this study, we are interested in a tree-based hierarchical 227

class structure. In all cases, the hierarchy imposes a parent- 228

child relationship among the classes, which implies that an 229

instance belonging to a specific class also belongs to all its 230

ancestor classes. Table I describes the most frequent symbols 231

used throughout this paper. 232

A taxonomy is thus typically defined as a pair (D,≺), where 233

D is the set of all classes and “≺” represents the “is-a” relation- 234

ship, which is the subclass-of relationship with the following 235

properties [13]: 236

1) Asymmetry: if di ≺ dj then dj ⊀ di for every di, dj ∈ D. 237

2) Antireflexivity: di ⊀ di for every di ∈ D. 238

3) Transitivity: if di ≺ dj and dj ≺ dk , then di ≺ dk for 239

every di, dj , dk ∈ D. 240

An example of a tree-based hierarchical class structure is 241

shown in Fig. 1. The root node Objects is not the real class of 242

each sample. 243

Example 1: In Fig. 1, we can obtain asymmetry and transi- 244

tivity of a tree-based hierarchical class structure as follows: 245

1) Asymmetry: Chair is a Seating, but Seating is not a Chair. 246

2) Transitivity: Chair is a Seating and Seating is a House- 247

hold. We can know that Chair is a Household. 248
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TABLE II
THREE STRATEGIES TO DEFINE POSITIVE AND NEGATIVE SAMPLES

TABLE III
EXAMPLE DATA

Fig. 2. Tree structure of example data.

B. Flat Classification and Hierarchical Classification249

In fuzzy rough sets, the fuzzy lower approximation depends250

on the nearest sample y from different classes of x. For con-251

venience, we call samples with the same class as x positive252

samples and call those from different classes as x negative sam-253

ples. The search scope of negative samples plays a crucial role254

in defining the lower approximation of fuzzy rough sets. There255

are several ways to define the positive samples and negative256

samples for training binary classifiers. We can use these strate-257

gies to compute the fuzzy lower approximation and fuzzy upper258

approximation. Table II gives three strategies to define positive259

and negative samples, and they are exclusive, inclusive, and260

sibling strategies.261

In flat classification, we do not consider the relationship262

among different classes. Therefore, the negative samples are263

not A if the positive sample is A. We call this an exclusive strat-264

egy [46], as described in the first row of Table II. Thus, only265

samples explicitly labeled with A as their most specific class are266

selected as positive samples, and everything else is considered267

as negative samples.268

Given a classification task, we have 12 samples listed in Ta-269

ble III. Each sample is characterized by a condition attribute A.270

d1 , d2 , d3 , d4 , d5 , and d6 are six classes.271

The positive class is the class of sample xi , and the negative272

class is the class different from xi . Compared with hierarchical273

classification, the flat classification approach is the simplest one274

that does not consider the hierarchy of the class.275

Hierarchical problems are particularly prevalent in large-scale276

datasets. We are interested in approaches that cope with a pre-277

defined class hierarchy. Fig. 2 shows the tree structure of Dtree,278

where Dtree is a tree-based hierarchical class with values d1 , d2 ,279

d3 , d4 , d5 , and d6 in Table III.280

According to the tree-based hierarchical class structure, there 281

is an “is-a” relationship between the parent and child nodes 282

to describe the parent-child relationship. The descendant cate- 283

gories of x are positive samples; therefore, it is not necessary to 284

consider these samples when the lower approximation is com- 285

puted. We call this an inclusive strategy [46], as described in 286

the second row of Table II, where des(A) denotes descendant 287

categories of class A. 288

Based on the tree-based hierarchical class structure, sib- 289

ling nodes with the same parent have a high fuzzy similar- 290

ity degree. Therefore, it may be effective to search for nega- 291

tive samples within only the sibling nodes called the sibling 292

strategy. The sibling strategy [47] is listed in the third row 293

of Table II, where sib(A) denotes sibling categories of class 294

A. We can use this hierarchical information to decrease the 295

search scope of the negative samples and reduce the algorithm’s 296

complexity. 297

We use the following example to compare the exclusive strat- 298

egy with flat classes and the inclusive and sibling strategies with 299

hierarchical classes. 300

Example 2: Continuing with Example 1, we give an intu- 301

itive interpretation of different positive and negative samples in 302

Fig. 1. 303

We have the following results according to different strate- 304

gies. 305

1) Exclusive strategy: The positive sample is Chair if we let 306

A be Chair. That is, pos(A) = {5}. The negative samples 307

are not Chair, that is, neg(A) = {1, 2, 3, 4, 5, 7}. 308

2) Inclusive strategy: The positive samples are Seating, 309

Chair, and Sofa, that is, pos(A) = {5, 6, 7}. The nega- 310

tive samples are neg(A) = {1, 2, 3, 4}. 311

3) Sibling strategy: The positive sample is Chair if we let A 312

be Chair. The negative samples are sib(A) = {7}. 313

In fuzzy rough sets, the fuzzy lower approximation of a sam- 314

ple is computed from the nearest sample to xi in classes different 315

from xi , which means the nearest negative sample. In this tree 316

hierarchical structure, the nearest sample is in the descendant, 317

ancestor, and sibling categories. From Table II, the descendant 318

categories are usually positive samples. Therefore, we use the 319

sibling strategy to select negative samples. For example, the 320

nearest negative sample to Chair is Sofa, which is consistent 321

with an intuitive interpretation. 322

C. Fuzzy Rough Sets for Hierarchical Classification 323

Classification is one of the most important problems in data 324

mining, machine learning, and statistical pattern recognition. 325

Related research has focused on flat classification problems, 326

which are standard binary or multiclass classification prob- 327

lems [48]. The lower approximation of classical fuzzy rough 328

sets is the minimum distance of a sample from the different 329

classes, and the upper approximation is the maximum distance 330

in the same class [49]. Generally, we focus on traditional datasets 331

with nonhierarchical classes. Therefore, the same classes of x 332

exclude every instance except for those that have exactly the 333

same class as x (and not those that are more general or more 334

specific). 335
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Nowadays, in some important applications, there are several336

hierarchical classification problems. The hierarchy defines an337

inheritance (IS-A) relationship between the class nodes, where338

each class is a special case of its parent class [46]. Any class is a339

special case of each ancestor class, where an ancestor is any class340

along the path from the class to the root of the hierarchy. Now,341

we consider the fuzzy lower approximation of classification for342

hierarchical classes.343

The tree-based hierarchical class structure can be formulated344

as 〈U,C,Dtree〉, where U is a universal set of objects, C is a345

nonempty set of conditional attributes, and Dtree is the decision346

attribute that divides the samples into subsets {d1 , d2 , . . . , dl}.347

l is the number of classes. Dtree satisfies a pair (Dtree,≺), which348

is introduced in Section III-A. R is a fuzzy similarity relation349

on U generated with features B ⊆ C.350

There are several methods for defining the set of positive351

(same) and negative (different) classes in Table II. We can use352

these strategies to define the approximation of fuzzy rough sets353

for hierarchical classification. Traditional classification deals354

with nonhierarchical classes, which is flat classification. We call355

this the exclusive strategy. The lower and upper approximations356

are defined in (6).357

When inclusive strategy is considered, for all x ∈ U , we have358

di(x) =

{
0, x /∈ {des(di) ∪ di}
1, x ∈ {des(di) ∪ di}

. (7)

The fuzzy rough approximations are defined as359

RS inclusivedi(x) = inf
y /∈{des(di )∪di }

(1 − R(x, y))

RT inclusivedi(x) = sup
y∈{des(di )∪di }

R(x, y)

Rϑ inclusivedi(x) = inf
y /∈{des(di )∪di }

(
√

1 − R2(x, y))

Rσ inclusivedi(x) = sup
y∈{des(di )∪di }

(1 −
√

1 − R2(x, y)). (8)

When sibling strategy is considered, for all x ∈ U , we have360

di(x) =

{
0, x ∈ {sib(di)}
1, x ∈ {di}

. (9)

The fuzzy rough approximations are defined as361

RS siblingdi(x) = inf
y∈{sib(di )}

(1 − R(x, y))

RT siblingdi(x) = sup
y∈{di }

R(x, y)

Rϑ siblingdi(x) = inf
y∈{sib(di )}

(
√

1 − R2(x, y))

Rσ siblingdi(x) = sup
y∈{di }

(1 −
√

1 − R2(x, y)). (10)

Several properties of the fuzzy rough sets for hierarchical362

classification are as follows. Compared with the exclusive strat-363

egy, we have the following propositions when we consider the364

sibling strategy.365

Proposition 1: Given 〈U,C,Dtree〉, R is a fuzzy similarity 366

relation induced by B ⊆ C. Let di be a class of samples labeled 367

with i, for x ∈ U 368

RS siblingdi(x) ≥ RS di(x)

Rϑ siblingdi(x) ≥ Rϑdi(x). (11)

Proof: Suppose that ysi is the sample with class ysi ∈ 369

sib(di), such that RS siblingdi(x) = 1 − R(x, ysi). Suppose 370

that yex is the sample with class yex ∈ Dtree\di , such that 371

RS di(x) = 1 − R(x, yex). Since sib(di) ⊆ Dtree\di , we have 372

R(x, ysi) ≤ R(x, yex). Therefore, RS siblingdi(x) ≥ RS di(x). 373

Analogically, we can also obtain Rϑ siblingdi(x) ≥ Rϑdi(x). � 374

Proposition 2: Given 〈U,C,Dtree〉, R is a fuzzy similarity 375

relation induced by B ⊆ C. If di is a class of samples labeled 376

with i and x ∈ U , we have 377

RT siblingdi(x) = RT di(x)

Rσ siblingdi(x) = Rσdi(x). (12)

Proof: Since RT di(x)=supy∈di
R(x, y) and RT siblingdi(x) 378

= supy∈di
R(x, y). Therefore, RT siblingdi(x) = RT di(x). Ana- 379

logically, we can also obtain Rσ siblingdi(x) = Rσdi(x). � 380

The sibling strategy and inclusive strategy have different pos- 381

itive and negative sample definitions. We have the following 382

proposition when we consider the sibling strategy and inclusive 383

strategy, respectively. 384

Proposition 3: Given 〈U,C,Dtree〉, R is a fuzzy similarity 385

relation induced by B ⊆ C. Let di be a class of samples labeled 386

with i, for x ∈ U 387

RS siblingdi(x) ≥ RS inclusivedi(x)

RT siblingdi(x) ≤ RT inclusivedi(x)

Rϑ siblingdi(x) ≥ Rϑ inclusivedi(x)

Rσ siblingdi(x) ≤ Rσ inclusivedi(x). (13)

Proof: Suppose that ysi is the sample with class from 388

sib(di), such that RS siblingdi(x) = 1 − R(x, ysi). Suppose 389

that yin is the sample with class from Dtree\{des(di) ∪ di}, 390

such that RS inclusivedi(x) = 1 − R(x, yin). Since sib(di) ⊆ 391

Dtree\{des(di) ∪ di}, we have R(x, ysi) ≤ R(x, yin). Thus, 392

RS siblingdi(x) ≥ RS inclusivedi(x). Analogically, we can also ob- 393

tain Rϑ siblingdi(x) ≥ Rϑ inclusivedi(x). 394

Suppose that ysi is the sample with class from di , such 395

that RT siblingdi(x) = R(x, ysi). Suppose that yin is the sam- 396

ple with class from {des(di) ∪ di}, such that RT inclusivedi(x) = 397

R(x, yin). Since di ⊆ {des(di) ∪ di}, we have R(x, ysi) ≤ 398

R(x, yin). Thus, RT siblingdi(x) ≤ RT inclusivedi(x). Analogi- 399

cally, we can also obtain Rσ siblingdi(x) ≤ Rσ inclusivedi(x). � 400

According to Propositions 2 and 3, we can obtain 401

RT di(x) ≤ RT inclusivedi(x)

Rσdi(x) ≤ Rσ inclusivedi(x). (14)
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Proposition 4: Given 〈U,C,Dtree〉, R is a fuzzy similarity402

relation induced by B ⊆ C. Let di be a class of samples labeled403

with i, for x ∈ U404

RS inclusivedi(x) ≥ RS di(x)

Rϑ inclusivedi(x) ≥ Rϑdi(x). (15)

Proof: Suppose that yin is the sample with class405

from Dtree\{des(di) ∪ di}, such that RS inclusivedi(x) =406

1 − R(x, yin). Suppose that yex is the sample with407

class yex ∈ Dtree\di , such that RS di(x) = 1 − R(x, yex).408

Since Dtree\{des(di) ∪ di} ⊆ Dtree\di , we have R(x, yin) ≤409

R(x, yex). Thus, RS inclusivedi(x) ≥ RS di(x). Analogically, we410

can also obtain Rϑ inclusivedi(x) ≥ Rϑdi(x). �411

Proposition 5: Given 〈U,C,Dtree〉, R1 and R2 are two fuzzy412

similarity relations induced by B1 and B2 , respectively, and413

R1 ⊆ R2 . Let di be a class of samples labeled with i, for x ∈ U414

R1S siblingdi(x) ≥ R2S siblingdi(x)

R1T siblingdi(x) ≤ R2T siblingdi(x)

R1ϑ siblingdi(x) ≥ R2ϑ siblingdi(x)

R1σ siblingdi(x) ≤ R2σ siblingdi(x). (16)

Proof: The proof is straightforward. �415

We give the following example to compare the computation416

among three strategies on the intermediate nodes. For simplifi-417

cation, we use the model defined with T -norm and T -conorm418

operators. For comparing with the flat algorithm in [28], we419

use the same function, the Gaussian function, to compute fuzzy420

similarity relations R, and the parameter σ is set to 0.2421

R(x, y) = exp
(
−||x − y||2

σ

)
, (17)

where ||x − y|| is the distance between x and y.422

Example 3: We give an example of computing fuzzy lower423

approximation based on different strategies with the data listed424

in Table III. We select x3 with class d2 to compute the lower425

approximation. For exclusive strategy426

RS d2(x3) = inf
y /∈{d2 }

(1 − R(x3 , y))

= inf
y∈{d1 ,d3 ,d4 ,d5 ,d6 }

(1 − R(x3 , y))

= 1 − exp
(
−||x3 − x2 ||2

0.2

)
= 0.0242. (18)

As to the inclusive strategy427

RS inclusived2(x3) = inf
y /∈{des(d2 )∪d2 }

(1 − R(x3 , y))

= inf
y /∈{d2 ,d1 ,d3 }

(1 − R(x3 , y))

= inf
y∈{d4 ,d5 ,d6 }

(1 − R(x3 , y))

= 1 − exp
(
−||x3 − x7 ||2

0.2

)
= 0.0695.

(19)

Fig. 3. Example of sibling relationship.

As to the sibling strategy 428

RS siblingd2(x3) = inf
y∈{sib(d2 )}

(1 − R(x3 , y))

= inf
y∈{d5 }

(1 − R(x1 , y))

= 1 − exp
(
−||x3 − x9 ||2

0.2

)
= 0.1201. (20)

We have RS siblingdi(x) ≥ RS inclusivedi(x) ≥ RS di(x). 429

In this example, we should compute the samples y ∈ 430

{d1 , d3 , d4 , d5 , d6} when we use the exclusive strategy and the 431

samples y ∈ {d4 , d5 , d6} when we consider the inclusive strat- 432

egy. We need to compute the samples y ∈ {d5} for the sibling 433

strategy. This can significantly reduce the computation time, 434

especially for large datasets. 435

IV. HIERARCHICAL FEATURE SELECTION 436

Feature selection is an indispensable preprocessing step of 437

high-dimensional data classification [50], and can help to iden- 438

tify redundant or correlated features [51]. Fuzzy rough set theory 439

is an effective method for selecting feature subsets using the de- 440

pendencies between the decision and condition attributes. These 441

dependencies can identify effective features for classification. 442

The two main steps in any feature selection algorithm are feature 443

evaluation and the search strategy. 444

The inclusive strategy and sibling strategy discussed above 445

have their own advantages. The inclusive strategy reduces the 446

computational complexity when we consider the intermediate 447

nodes. In this paper, we consider the leaf nodes to be real classes 448

and use the sibling strategy to select the feature subset. The min- 449

imum distance of a sample from different classes is a critical 450

factor in feature selection. Fig. 3 shows the hierarchical struc- 451

ture of classes. In this hierarchical structure, there are common 452

characteristics among the sibling classes because they share a 453

parent node. Thus, we select the nearest negative samples from 454

the sibling nodes, which is consistent with an intuitive interpre- 455

tation. 456

Definition 1: Given a hierarchical classification problem 457

〈U,C,Dtree〉, R is the T− equivalence relation on U computed 458

with the distance function R(x, y) in the feature space B ⊆ C. 459

Dtree = {d0 , d1 , d2 , . . . , dl}, where d0 is the root of the tree and 460

it is not the real class. U is divided into {d1 , d2 , . . . , dl} with the 461

decision attribute, where l is the number of classes. The fuzzy 462
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positive region of Dtree in term of B is defined as463

POSS
B sibling

(Dtree) = ∪l
i=1RS siblingdi. (21)

Definition 2: Given a classification problem 〈U,C,Dtree〉, R464

is the T -equivalence relation on U computed with the distance465

function R(x, y) in the feature space B ⊆ C, and U is divided466

into {d1 , d2 , . . . , dl} with the decision attribute, where l is the467

number of classes. The quality of the classification approxima-468

tion is defined as469

γS
B sibling

(Dtree) =
| ∪l

i=1 RS siblingdi |
|U | . (22)

As RS siblingdi(x) = inf
y∈sib(di )

(1 − R(x, y)), we get that470

| ∪l
i=1 RS siblingdi | =

|U |∑
j=1

l∑
i=1

RS siblingdi(xj ). (23)

Let xj /∈ di , we have RS di(xj ) = 0. We also have471

RS siblingdi(xj ) = 0 according to Proposition 1. Thus, we have472

|U |∑
j=1

l∑
i=1

RS siblingdi(xj ) =
|U |∑
j=1

RS siblingd(xj )

=
|U |∑
j=1

inf
xj ∈d,y∈sib(d)

(1 − R(xj , y))

(24)

where d is the class label of xj .473

The coefficients of classification quality reflect the approxi-474

mation ability of the approximation space or the ability of the475

granulated space induced by feature subset B to characterize476

the decision [28]. These coefficients can evaluate the condition477

attribute with degree γS
B (Dtree), and reflect the dependence be-478

tween the decision and condition attributes. The monotonicity479

approximations are given by Theorem 1, which applies to both480

sibling strategy and inclusive strategy.481

Theorem 1: Given a hierarchical classification problem482

〈U,C,Dtree〉, R1 and R2 are two fuzzy similarity relations in-483

duced by B1 and B2 , respectively, and R1 ⊆ R2 , we have484

POSS
B1

(Dtree) ⊆ POSS
B2

(Dtree). (25)

Proof: Let di be a class of samples labeled with i, for x ∈ U ,485

we have R1S di(x) ≥ R2S di(x) since R1 ⊆ R2 . We can de-486

rive that POSS
B1

(Dtree) ⊆ POSS
B2

(Dtree) since POSS
B (Dtree) =487

∪l
i=1RS di . �488

According to Definition 2 and Theorem 1, we have489

γS
B1

(Dtree) ≤ γS
B2

(Dtree). (26)

In a feature selection algorithm, feature evaluation quantifies490

how good the feature subset is, and search strategies are used491

to identify the optimal feature subset. First, we evaluate each492

feature according to its dependence coefficient and rank them493

in terms of feature quality. Then, we select the best feature and494

delete redundant features to further reduce the computation time.495

A fuzzy rough sets based feature selection algorithm for hi-496

erarchical classification (FFS-HC) is illustrated in Algorithm 1.497

Algorithm 1 A fuzzy Rough Sets Based Feature Selection
Algorithm for Hierarchical Classification (FFS-HC).

Input: 〈U,C,Dtree〉
Output: A feature subset B

1: B = ∅; CD = ∅;
//Addition

2: CA = C;
3: while (γS

C (Dtree) − γS
B (Dtree) < δ)) do

4: for each a ∈ CA do
5: Compute γS

a∪B (Dtree) according to SSFE;
6: end for//Delete the redundant features
7: if B == ∅ then
8: for each a ∈ CA do
9: Select feature adel is smaller than the average

γS
a (Dtree);

10: CD = CD ∪ adel;
11: end for
12: CA = CA − CD;
13: end if
14: Select a′ with the maximal γS

a ′∪B (Dtree);
15: B = B ∪ {a′};
16: CA = CA − {a′};
17: end while
18: return B;

The sibling strategy based feature evaluation (SSFE) of FFS-HC 498

is provided in line 5 in Algorithm 1, and the specific implemen- 499

tation of SSFE is illustrated in Algorithm 2. Dtree is a tree-based 500

hierarchical structure of the classes, and it is a global variable 501

that should be explicitly initialized. 502

We use a sibling-based relief algorithm to find the optimal 503

feature subset for comparing the flat feature selection with the 504

proposed hierarchical feature selection. The complexity of the 505

relief algorithm will become unacceptable when the number of 506

records in the dataset increases to a large scale. In general, the 507

size of the search space for the feature selection algorithm is 508

2|C |. Algorithm 1 deals with this issue effectively by deleting 509

redundant features to reduce the search space. 510

We consider two strategies in Algorithms 1 and 2 for reduc- 511

ing the search space. First, we can reduce the computing space 512

by using the sibling strategy, which is listed from lines 3–9 in 513

Algorithm 2. This strategy can reduce the computation time sig- 514

nificantly. Second, we compute the dependence of each feature 515

only once. We then delete the redundant features in the first 516

round, as described from lines 7–13 in Algorithm 1. 517

V. EVALUATION MEASURES 518

The proposed method is to deal with hierarchical classifi- 519

cation, which is different from flat classification. Accordingly, 520

the evaluation measures for the FFS-HC algorithm should be 521

different. Measures were introduced to evaluate hierarchical 522

classification in [13]. 523

Example 4: Fig. 1 shows the hierarchical classification sub- 524

tree of visual object classes (VOC) classification. We assume 525

that the true class for a test instance is Car and that two classi- 526

fication systems output Bus (Case 1) and Sofa (Case 2) as the 527
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Algorithm 2 Sibling Strategy Based Feature Evaluation
(SSFE).

Input: 〈U,C,Dtree〉, r = 0, and B
Output: r
1: for i = 1 to |U | do
2: Compute decision di of sample xi ;
3: Select samples Xsib with class sib(di);
4: if length(Xsib) == 0 then
5: Random select samples out of di as Xsib;
6: end if
7: for each y ∈ Xsib do
8: Compute 1 − R(xi, y);
9: end for

10: Select y′ such that RS siblingdi(xi) = 1 − R(xi, y
′);

11: r = r + 1 − R(xi, y
′);

12: end for
13: r = r/|U |;
14: return r;

predicted classes. These two errors are the same using flat eval-528

uation measures, and these two systems are punished equally.529

However, Case 2 is more severe because it makes a prediction530

in a different and unrelated subtree. Thus, the punishment for531

Case 2 should be larger than that for Case 1.532

In some cases, a sample can be classified into more than one533

class in the hierarchy. The pair-based measure and set-based534

measure are two main hierarchical evaluation measures.535

A. Pair-Based Measures536

As stated above, different classification errors result in dif-537

ferent levels of penalty. In our model, this penalty is defined by538

the tree distance, which is called the tree-induced error (TIE)539

in [52]. The TIE is computed by predicting label dv when the540

correct label is du541

TIE(du , dv ) = |EH (du , dv )| (27)

where EH (du , dv ) is the set of edges along the path from du542

to dv in the hierarchy, and | · | denotes the count of elements.543

That is, TIE(du , dv ) is defined to be the number of edges along544

the path from du to dv in the tree of D. TIE(du , du ) = 0,545

TIE(du , dv ) = TIE(dv , du ), and the triangle inequality always546

holds with equality.547

Example 5: Continuing with Example 4, the true class for a548

test instance is Car. The predicted class with Sofa is punished549

TIE(2, 7) = 5, which is larger than the punishment TIE(2, 3) =550

2 for the predicted class with Bus.551

B. Set-Based Measures552

Pair-based measures consider only a pair of predicted and553

true classes. Unlike pair-based measures, set-based measures554

take into account the entire sets of predicted and true classes,555

including their ancestors or descendants.556

Set-based measures have the following two distinct phases:557

1) the augmentation of D and D̂ with information on the 558

hierarchy; and 559

2) the calculation of a cost measure based on the augmented 560

sets. 561

The augmentation of D and D̂ is a crucial step that attempts 562

to capture the hierarchical relations of the classes. There are 563

different measures based on different augmented approaches 564

for the sets of predicted and true classes. We select the measure 565

that the sets are augmented with the ancestors of the true and 566

predicted classes [3], [53] as follows: 567

Daug = D ∪ anc(D)

D̂aug = D̂ ∪ anc(D̂). (28)

Hierarchical precision and recall are defined as follows: 568

PH =
|D̂aug ∩ Daug|

|D̂aug|

RH =
|D̂aug ∩ Daug|

|Daug| (29)

where | · | denotes the count of elements. The F1-measure is 569

defined as follows: 570

FH =
2 · PH · RH

PH + RH
. (30)

Continuing with Example 4, we can compute the hierarchical 571

precision, recall, and F1-measure of two cases. 572

Case 1: In Fig. 1, let D = {2} and D̂ = {3}, which means 573

that the true class of a test instance is Car and the predicted 574

class is Bus: Daug = {2, 1, 0} and D̂aug = {3, 1, 0}; PH = 0.67, 575

RH = 0.67, and FH = 0.67. 576

Case 2: In Fig. 1, let D = {2} and D̂ = {7}, which means 577

that the true class for a test instance is Car and the predicted class 578

is Sofa: Daug = {2, 1, 0} and D̂aug = {7, 5, 4, 0}; PH = 0.25, 579

RH = 0.33, and FH = 0.29. 580

C. Lowest Common Ancestor (LCA) F1 Measure 581

The set-based measure adds all the ancestors, and it has over 582

penalizing errors that occur to nodes with many ancestors. Kos- 583

mopoulos et al. [13] proposed LCA measures to deal with this 584

problem. The concept of LCA was defined in graph theory [54]. 585

The LCA of two nodes du and dv of a tree D, LCA(du , dv ), is 586

defined as the lowest node in D (furthest from the root), which 587

is an ancestor of both du and dv [13]. For example, in Fig. 1, 588

LCA(du , dv ) = 1 if du = 2 and dv = 3, which means that the 589

LCA of Car and Bus is vehicles. 590

Example 6: In Fig. 1, let D = {6} and D̂ = {7}. The LCA 591

of Chair and Sofa is only the node Seating. Thus, based 592

on LCA method, Daug = {6, 5} and D̂aug = {7, 5}. PLCA = 593

0.5, RLCA = 0.5, and FLCA = 0.5. However, based on hi- 594

erarchal method, Daug = {6, 5, 4, 0} and D̂aug = {7, 5, 4, 0}. 595

PH = 0.75, RH = 0.75, and FH = 0.75. 596

According to Example 6, redundant nodes can lead to fluctu- 597

ations in PLCA, RLCA, and FLCA. Thus they should be removed. 598
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TABLE IV
DATA DESCRIPTION

Fig. 4. Hierarchy of landscape branch of the SAIAPR dataset.

VI. EXPERIMENTAL ANALYSIS599

In this section, we first introduce four datasets used in our600

experiments. We then compare the proposed hierarchical feature601

selection with the flat feature selection proposed in [28]. All the602

numerical experiments are implemented in MATLAB R2014b603

and executed on an Intel Core i7-3770 running at 3.40 GHz with604

16.0 GB memory and a 64-bit Windows 7 operating system. We605

select the feature subsets on the training sets and test them on the606

test sets using an SVM, a KNN, and NB classifiers, respectively.607

For the SVM classifier, ten-fold cross-validation is performed608

using a linear kernel and c = 1. For the KNN classifier, we set609

parameter k = 5 for the class decision based on the preliminary610

experiments.611

A. Datasets612

Four datasets are used in the experiments. Basic statistics for613

these datasets are provided in Table IV.614

The first dataset is Bridges that is from the University of615

California-Irvine library [55].616

The second dataset is SAIAPR, which is an extension of IAPR617

TC-12 collection. Each image has been manually segmented618

and the resultant regions have been annotated according to a619

predefined vocabulary of labels; the vocabulary is organized620

according to a hierarchy of concepts. According to [56], an621

object can be in one of six main branches: “animal,” “landscape,”622

“man-made,” “human,” “food,” or “other.” Fig. 4 shows the623

“landscape” branch of the hierarchy.624

We use portions of the samples (1000, 5000, and 10 000) as625

a training set to select the feature subset, and use 5000, 10 000,626

and all samples as the test set to evaluate the effectiveness of627

the selected feature subset. According to Algorithm 1, 41 fea-628

tures are first selected from 512 features in three training sets629

containing 1000, 5000, and 10 000 samples, respectively; these630

features share some attributes. The number of shared attributes631

TABLE V
NUMBER OF SHARING ATTRIBUTES

TABLE VI
FLAT CLASSIFICATION ACCURACY (SVM)

Fig. 5. Hierarchy of the VOC dataset.

is listed in Table V. For example, the feature subset selected 632

from 5000 samples has 32 features that are identical to those in 633

the feature subset selected from 10 000 samples. The running 634

time when using 5000, 10 000, and all samples to test the 41 635

features selected in different subsets are 53, 190, and 13 500 s, 636

respectively. This demonstrates that using a portion of the sam- 637

ples to approximate the dependence coefficient of the samples 638

can essentially reduce the running time. 639

The results of flat SVM classification accuracy using different 640

sample subsets listed in Table VI confirm that it is not necessary 641

to use all samples to select features. In this study, we use 5000 642

samples to select a feature subset under the basic premise of not 643

affecting the classification accuracy. 644

The third dataset is PASCAL VOC, which is a benchmark in 645

visual object category recognition and detection that provides 646

the vision and machine learning communities with a standard 647

dataset of images and annotations [57]. Fig. 5 shows the hierar- 648

chy of VOC. In Table IV, there are 7178 samples for the training 649

dataset and 5105 samples for the testing dataset of PASCAL 650

VOC [57]. 651

Finally, the fourth dataset is News20 corpus, which was 652

collected and originally used for document classification by 653

Lang [58]. This dataset includes 18 446 messages collected from 654

20 different Netnews newsgroups. One thousand messages from 655

each of the 20 newsgroups were chosen at random and parti- 656

tioned by newsgroup name. The list of newsgroups from which 657

the messages were chosen is shown in Fig. 6. We use the “by- 658

date” version, which contains 951 documents evenly distributed 659

across 20 classes. After stemming and stop word removal, this 660

corpus contains 26 214 distinct terms [59]. 661
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Fig. 6. Hierarchy of the News20 dataset.

TABLE VII
FLAT EVALUATION ON DIFFERENT DATASETS

B. Flat Evaluation662

The performance evaluation measures of previous learning663

algorithms are those commonly used to describe the classifica-664

tion accuracy of SVM, KNN, and NB methods. We refer to these665

measures as flat evaluations because they do not consider the666

hierarchical classes. We first use classification accuracy listed667

in Table VII to visually compare the results of the proposed668

algorithm with those from a flat algorithm on different datasets.669

The best performance on each measure is highlighted in bold.670

From Table VII, we can identify the changes in accuracy with671

different numbers of selected features. We can also observe that672

the performance of the features selected by the hierarchical673

method is better than that of the flat method. In Table VII(a), it674

is clear that using 63.64% of features gives better performance675

than using all features on SVM and KNN classifiers. This means676

that we can obtain a set of representative features using only the677

Fig. 7. Comparison of accuracy between flat and hierarchical strategies.
(a) Bridges. (b) SAIAPR. (c) VOC. (d) News20.

sibling samples. These results prove the effectiveness of the 678

hierarchical selection method proposed in this paper. 679

There are 26 214 features in the News20 dataset. The flat 680

feature selection method takes almost three hours to select a 681

feature. It could not output its results within several days when 682

we select 500 features (1.91%× 26 214). Thus, we use “—” to 683

denote this condition in Table VII. In addition, from Table VII, 684

we can observe that the performance of KNN is not great. The 685

dataset of News20 is relatively sparse and may be inherently dif- 686

ficult to learn, as evidenced by the relatively poor performance 687

with all features. The accuracy of KNN is only 7.25% when all 688

features have been selected. Thus, KNN is not suitable for this 689

dataset. The accuracy of SVM classification is 40.03% when we 690

select 1.91% of features using the hierarchy method. 691

Fig. 7 compares the accuracy of SVM between flat and hier- 692

archical strategies on different datasets. The results of the ex- 693

periments show that our algorithm performs well with different 694

numbers of condition attributes. 695

C. Hierarchical Evaluation 696

We use SVM to evaluate our algorithm because the usual 697

measure of performance for such classifiers is the accuracy rate. 698

However, in hierarchical application problems, the output of 699

the hierarchical algorithm is part of the hierarchical classes, 700

which is different from the case of flat classes. Thus, we also 701

use hierarchical evaluation to evaluate the performance of our 702

algorithm. Table VIII presents the results of the hierarchical 703

and flat algorithms on different datasets evaluated by the TIE, 704

Hierarchical F1 , and LCA F1 measures. 705

We use TIE to consider some different errors caused by the 706

hierarchy. The “↓” after TIE indicates “the smaller the better.” 707

Hierarchical F1 and LCA F1 are set-based measures. The “↑” 708

after the set-based measures indicates “the larger the better.” We 709

describe the results of these three measures on four datasets in 710

Table VIII. In terms of effectiveness, hierarchical feature selec- 711

tion gives better performance than that of flat feature selection. 712
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TABLE VIII
HIERARCHICAL EVALUATION ON DIFFERENT DATASETS

TABLE IX
AVERAGE NUMBER OF SAMPLES IN THE SEARCH SPACE

The results demonstrate that our algorithm provides an efficient713

solution to finding a better subset of the features.714

In terms of the three measures in Table VIII, we observe the715

following:716

1) The value of TIE is related to the scale of the hierarchical717

structure of classes.718

2) The value of LCA F1 is less than that of Hierarchical F1 .719

This is because having many common ancestors tends to720

overpenalize errors. LCA F1 can avoid this type of error.721

3) These three measures for the quantitative hierarchical722

comparison results are consistent with the flat compar-723

ison results.724

D. Comparison of Efficiencies Between Flat and Hierarchical725

Strategies726

We now study the computational complexity of the flat and727

hierarchical strategies. Table IX lists the average number of728

samples in the search space when we compute the lower and729

upper approximations.730

For example, there are 7178 samples in VOC training dataset.731

The flat feature selection algorithm requires 6503 computations732

to select one feature. This is 90.6% of the size of VOC train-733

ing dataset. In contrast, the hierarchical strategy can select one734

Fig. 8. Number of different classes in VOC dataset.

Fig. 9. Running time comparison of the first feature selection between flat
and hierarchical strategies.

feature from only 276 computations, which is only 3.9% of all 735

the samples. The computational load is reduced from 98.0% 736

to 6.5% on SAIAPR. SAIAPR has 256 classes, and the sibling 737

strategy is an effective method for datasets with more classes. 738

These statistics lead us to the conclusion that the hierarchical 739

strategy clearly reduces the computational complexity. Exam- 740

ple 7 gives an intuitive understanding of the search space of the 741

sibling strategy. 742

Example 7: Fig. 5 shows a hierarchical structure of 20 743

classes. The Dog and Cat classes have a sibling relationship 744

in this hierarchical structure. Fig. 8 shows the number of differ- 745

ent classes in VOC training dataset. Using the exclusive strategy, 746

the negative samples of a Cat are all non-Cat samples. In con- 747

trast, when we use the sibling strategy, the negative samples of 748

a Cat are Dog samples. 749

We compare the efficiency of the flat algorithm and hierarchi- 750

cal algorithm. The running times for selecting the first feature 751

for both algorithms are shown in Fig. 9, where the unit of the 752

running time is second. From the results, we note that the hierar- 753

chical algorithm is an efficient algorithm in terms of the running 754

time. 755

The deleting strategy works well on large datasets. Table X 756

shows the comparison of running time used in selecting the 757

first feature and selecting other features. The running time for 758

selecting the first feature is 278.35s on SAIAPR. There is a 759

significant reduction from 278.35 to 41.43s. 760
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TABLE X
RUNNING TIME (S)

VII. CONCLUSIONS AND FUTURE WORK761

We have proposed a fuzzy rough set based feature selection762

algorithm for large-scale hierarchical classification. Based on763

the complicated data structure of modern datasets, we proposed764

a hierarchical feature selection method by considering the sib-765

ling strategy. We used the sibling nodes as the nearest samples766

from different classes to compute the fuzzy lower approxima-767

tion and evaluate the features. Two accelerating strategies were768

employed in the proposed algorithm. In addition, flat and hierar-769

chical evaluations were used to evaluate the effectiveness of the770

algorithm. Our advantage in terms of practical application is that771

we control the error rate artificially using the given hierarchi-772

cal class structure. Experimental results indicate the efficiency773

and effectiveness of the proposed algorithm. In particular, the774

proposed algorithm improves the classification performance by775

selecting the most relevant feature subset. In summary, this study776

suggests new research trends concerning fuzzy rough sets and777

hierarchical feature selection problems.778

The current implementation of the algorithm just considers779

tree structures of class labels. In fact, there are other complex780

structures in practices, such as directed acyclic graphs [18] and781

chain structures [60]. In the future, we will discuss feature se-782

lection algorithms for such tasks. In addition, the proposed al-783

gorithm just selects some informative features from the original784

set. However, discriminant information sometimes hides in the785

lower-dimensional combination of the high-dimensional fea-786

tures, where feature mapping or feature extraction is preferred.787

However, the proposed algorithm cannot achieve this objective.788

We are going to design techniques for hierarchical feature ex-789

traction in the future.790
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[50] A. Çakmak Pehlivanlı, “A novel feature selection scheme for high-936
dimensional data sets: Four-staged feature selection,” J. Appl. Statist.,937
vol. 43, pp. 1140–1154, 2014.938

[51] I. Guyon and A. Elisseeff, “An introduction to variable and feature selec-939
tion,” J. Mach. Learn. Res., vol. 3, pp. 1157–1182, 2003.940

[52] O. Dekel, J. Keshet, and Y. Singer, “Large margin hierarchical classifica-941
tion,” in Proc. Int. Conf. Mach. Learn., 2004, pp. 1–8.942

[53] L. Cai and T. Hofmann, “Exploiting known taxonomies in learning over-943
lapping concepts,” in Proc. Int. Joint Conf. Artif. Intell., 2007, pp. 714–719.944

[54] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, “On finding lowest common945
ancestors in trees,” SIAM J. Comput., vol. 5, no. 1, pp. 115–132, 1976.946

[55] C. L. Blake and C. J. Merz, “UCI repository of machine learn-947
ing databases,” 1998. [Online]. Available: http://www.ics.uci.edu/948
∼mlearn/mlrepository.html949

[56] H. J. Escalante et al., “The segmented and annotated IAPR TC-12 bench-950
mark,” Comput. Vis. Image Understanding, vol. 114, no. 4, pp. 419–428,951
2010.952

[57] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman,953
“The pascal visual object classes (VOC) challenge,” Int. J. Comput. Vis.,954
vol. 88, no. 2, pp. 303–338, 2010.955

[58] K. Lang, “Newsweeder: Learning to filter netnews,” in Proc. 20th Int.956
Conf. Mach. Learn., 1995, pp. 331–339.957

[59] D. Cai, X. F. He, W. V. Zhang, and J. W. Han, “Regularized locality958
preserving indexing via spectral regression,” in Proc. 16th ACM Conf. Inf.959
Knowl. Manage., 2007, pp. 741–750.960

[60] J. Knorn, A. Rabe, V. C. Radeloff, T. Kuemmerle, J. Kozak, and P. Hostert, 961
“Land cover mapping of large areas using chain classification of neigh- 962
boring landsat satellite images,” Remote Sens. Environ., vol. 113, no. 5, 963
pp. 957–964, 2009. 964

Hong Zhao received the M.S. degree in com- 965
puter application from Liaoning Normal Uni- 966
versity, Dalian, China, in 2006. She is cur- 967
rently a Ph.D. student in software engineer- 968
ing with the School of Computer Software, 969
College of Intelligence and Computing, Tianjin 970
University. 971

She is also a Professor with the School 972
of Computer Science, Minnan Normal University, 973
Zhangzhou, China. She has authored more than 40 974
journal and conference papers in the areas of granu- 975

lar computing based machine learning and cost-sensitive learning. Her research 976
interests include rough sets, granular computing, and data mining for hierarchi- 977
cal classification. 978

979

Ping Wang received the B.S., M.S., and Ph.D. de- 980
grees in computer science from Tianjin University, 981
Tianjin, China, in 1988, 1991, and 1998, respectively. 982

She is currently a Professor with the School of 983
Mathematics, Tianjin University. She is also a Ph.D. 984
Supervisor with the School of Computer Software, 985
College of Intelligence and Computing, Tianjin Uni- 986
versity. Her research interests include image process- 987
ing and machine learning. 988

989

Qinghua Hu (SM’13) received the B.S. and M.S. 990
degrees in power engineering and received his Ph.D. 991
degree in control science and engineering. 992

He was a Postdoctoral Fellow with the Depart- 993
ment of Computing, Hong Kong Polytechnic Univer- 994
sity, Hong Kong, from 2009 to 2011. He is currently 995
a Full Professor and the Vice Director of the College 996
of Intelligence and Computing, Tianjin University, 997
Tianjin, China. He has authored about 200 peer re- 998
viewed journal or conference papers in the areas of 999
granular computing based machine learning, reason- 1000

ing with uncertainty, pattern recognition, and fault diagnosis. His research inter- 1001
ests include rough sets, granular computing, and data mining for classification 1002
and regression. 1003

Prof. Hu was the Program Committee Co-Chair of the International Con- 1004
ference on Rough Sets and Current Trends in Computing in 2010, the Chinese 1005
Rough Set and Soft Computing Society in 2012 and 2014, and the Interna- 1006
tional Conference on Rough Sets and Knowledge Technology, the International 1007
Conference on Machine Learning and Cybernetics in 2014, and the General Co- 1008
Chair of International Joint Conference on Rough Sets 2015. He is currently the 1009
PC-Co-Chairs of China Conference on Machine Learning (CCML) 2017 and 1010
Chinese Conference on Computer Vision 2017. He is currently an Associate 1011
Editor for the IEEE TRANSACTIONS ON FUZZY SYSTEMS. 1012

1013

Pengfei Zhu received the B.S. degree in power engi- 1014
neering, M.S. degree in power machinery and engi- 1015
neering, and Ph.D degree in computer vision. 1016

He is currently an Associate Professor with the 1017
College of Intelligence and Computing, Tianjin Uni- 1018
versity, Tianjin, China. He has authored or coauthored 1019
more than 30 papers in International Conference on 1020
Computer Vision, Conference on Computer Vision 1021
and Pattern Recognition, European Conference on 1022
Computer Vision, Association for the Advancement 1023
of Artificial Intelligence, International Joint Confer- 1024

ences on Artificial Intelligence, and the IEEE TRANSACTIONS ON INFORMATION 1025
FORENSICS AND SECURITY, and IEEE TRANSACTIONS ON IMAGE PROCESSING. 1026
His research interests include machine learning and computer vision. 1027

Dr. Zhu is the Local Arrangement Chair for the International Joint Confer- 1028
ence on Rough Sets 2015, and the Chinese Conference on Computer Vision 1029
2017. 1030

1031



IEE
E P

ro
of

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 00, NO. 00, 2019 1

Fuzzy Rough Set Based Feature Selection for
Large-Scale Hierarchical Classification

1

2

Hong Zhao , Ping Wang, Qinghua Hu , Senior Member, IEEE, and Pengfei Zhu3

Abstract—The classification of high-dimensional tasks remains4
a significant challenge for machine learning algorithms. Feature5
selection is considered to be an indispensable preprocessing step in6
high-dimensional data classification. In the era of big data, there7
may be hundreds of class labels, and the hierarchical structure of8
the classes is often available. This structure is helpful in feature9
selection and classifier training. However, most current techniques10
do not consider the hierarchical structure. In this paper, we design11
a feature selection strategy for hierarchical classification based on12
fuzzy rough sets. First, a fuzzy rough set model for hierarchical13
structures is developed to compute the lower and upper approx-14
imations of classes organized with a class hierarchy. This model15
is distinguished from existing techniques by the hierarchical class16
structure. A hierarchical feature selection problem is then defined17
based on the model. The new model is more practical than existing18
feature selection approaches, as many real-world tasks are natu-19
rally cast in terms of hierarchical classification. A feature selection20
algorithm based on sibling nodes is proposed, and this is shown21
to be more efficient and more versatile than flat feature selection.22
Compared with the flat feature selection algorithm, the compu-23
tational load of the proposed algorithm is reduced from 98.0%24
to 6.5%, while the classification performance is improved on the25
SAIAPR dataset. The related experiments also demonstrate the26
effectiveness of the hierarchical algorithm.27

Index Terms—Feature selection, fuzzy rough sets, granular com-28
puting, hierarchical classification.29

I. INTRODUCTION30

IN THE era of big data, we can observe the following new31

trends in classification learning.32

1) The number of samples continues to increase. We now33

have abundant datasets for model training.34
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2) The number of features used to describe the samples has 35

increased from tens to hundreds of thousands, resulting in 36

high-dimensional tasks. 37

3) The number of class labels is also becoming larger and 38

larger. There are several hundred class labels in some 39

classification tasks, and the class labels form a hierarchical 40

structure, e.g., large-scale web categorization [1], image 41

recognition [2], and gene classification [3]. 42

The number of features is a crucial factor affecting the perfor- 43

mance of a classifier. Feature selection aims to select a subset 44

of features to decrease the time complexity, reduce the stor- 45

age burden, and improve the generalization ability of classifica- 46

tion [4]–[6]. This has a significant impact on both the running 47

time and accuracy of the subsequent processing steps. Thus, it is 48

highly desirable to develop effective algorithms that can select 49

informative features from the raw data [7]. 50

Various feature selection algorithms have been developed to 51

select features for binary classification or multiclass tasks. How- 52

ever, there are complex classification structures in real-world 53

applications, where the class labels to be predicted are hierar- 54

chically related [8]. Many real-world knowledge systems use 55

a hierarchical scheme to organize their data, particularly Ima- 56

geNet, Wikipedia [9], Internet web content, biological data [10], 57

geographical data [11], and text data [12]. Hierarchical classi- 58

fication is an increasingly popular method that addresses the 59

problem of classifying items into a hierarchy of classes [13]. In 60

2009, a workshop was organized for the PASCAL 2 large-scale 61

hierarchical text classification challenge [14]. This workshop 62

discussed the problems and challenges of large-scale hierarchi- 63

cal classification. 64

It has been reported that hierarchical methods produce better 65

performance than flat classification techniques [15], [16]. Deng 66

et al. [17] studied large-scale categorization using a category 67

distance measure based on the WordNet hierarchy. They derived 68

a hierarchy-aware cost function for classification and obtained 69

more informative classification results. Moreover, a hierarchi- 70

cal structure makes it feasible to apply greedy algorithms for 71

large-scale classification. Wei et al. [18] adapted a greedy algo- 72

rithm for multilabel classification on tree-structured hierarchies 73

using subtree optimization. The aforementioned methods are 74

based on a predefined hierarchy. Some other studies [19] have 75

focused on the construction of a hierarchical structure to deal 76

with large-scale classification. For instance, a visual hierarchi- 77

cal structure has been constructed to organize large numbers 78

of classes, and a learning algorithm was developed to train hi- 79

erarchical classifiers [20]. These hierarchical approaches can 80

1063-6706 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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achieve competitive results in terms of both classification accu-81

racy and computational efficiency.82

A hierarchical class structure provides some external knowl-83

edge of the classes and is helpful not only for classifier training84

but also feature selection. However, few feature selection ap-85

proaches for hierarchical class structures have been proposed.86

Hierarchical feature selection can split the problem into a set87

of smaller classification problems, each using its own feature88

set [21]. Freeman et al. [22] presented a method for joint feature89

selection and hierarchical classifier design using genetic algo-90

rithms, whereas Song et al. [23] proposed a feature selection91

method for hierarchical text classification. In these works, each92

child classification selects the best features considering the hi-93

erarchical class structure. They improve the accuracy of each94

classification task, but also reduce the feature dimension.95

The theory of fuzzy rough sets is an effective mathematical96

tool for describing the inconsistency between attributes and de-97

cisions, and it is widely used in feature selection and attribute98

reduction [24]–[26]. In recent years, research on fuzzy rough99

sets can be categorized into two classes. First, many researchers100

have discussed the expansion of the fuzzy rough set model. In101

2010, Chen et al. [27] introduced the concept of local reduc-102

tion with fuzzy rough sets for a decision system. In 2011, Hu103

et al. [28] integrated kernel functions with fuzzy rough set mod-104

els and proposed two types of kernelized fuzzy rough sets. In105

the second class, several different attribute reduction and feature106

selection methods using fuzzy rough sets have been proposed107

for different types of datasets [29]. For example, Zhao et al. [30]108

handled noisy datasets using fuzzy rough sets by proposing a109

robust method of dimension reduction. Another example is the110

application to decision systems with both symbolic and numer-111

ical conditional attributes by composing classical rough set and112

fuzzy rough set models [31]. In 2015, Chen et al. [32] studied113

the dynamic relation between granules, because data from dif-114

ferent applications may evolve with time, that is, the objects,115

attributes, and attribute values may change dynamically.116

The models and applications of fuzzy rough sets have been117

discussed in a comprehensive manner in recent decades [33]–118

[35]. These studies have focused almost exclusively on datasets119

with binary classification or multiclass tasks [36]–[38]. Few120

studies have considered datasets with high-dimensional classes,121

especially those with hierarchical class structures. In the era of122

big data, there may be hundreds of class labels, and the hier-123

archical structure of the classes is often available. This hierar-124

chical data structure reflects the relationship among classes and125

is helpful for feature selection and classifier training. However,126

fuzzy rough set-based feature selection using the hierarchical127

structure has not been systematically studied.128

In this paper, we propose a fuzzy rough set model for hi-129

erarchical classification and develop the corresponding feature130

selection algorithm. First, we embed the hierarchical structure131

into fuzzy rough sets and redefine the lower and upper approx-132

imations using an inclusive strategy and a sibling strategy for133

the hierarchical classification. The properties of the fuzzy rough134

sets for hierarchical classification are discussed. Second, we dis-135

cuss the feature evaluation and feature searching strategies for136

hierarchical feature selection. In hierarchical classification, we137

can reduce the search domain for the nearest sample using the138

predefined class hierarchy. This analysis provides a new view- 139

point to extend fuzzy rough sets in hierarchical applications. 140

Finally, a feature selection algorithm is designed for the hierar- 141

chical feature selection problem. We use sibling nodes to com- 142

pute the nearest samples, resulting in an efficient algorithm de- 143

sign. Moreover, some resampling strategies are also considered 144

to accelerate the algorithm. Support vector machines (SVM), 145

k-nearest neighbors (KNN), naive Bayes (NB) classifiers, and 146

three hierarchical measures are used to test the performances 147

of flat and hierarchical feature selection. We report the results 148

of several experiments to demonstrate that the proposed algo- 149

rithm outperforms the flat algorithms in terms of efficiency and 150

accuracy. 151

This paper is organized as follows. In Section II, we present 152

some preliminaries on fuzzy rough sets. Then, we introduce 153

the model of fuzzy rough sets for hierarchical classification in 154

Section III. We design a hierarchical feature selection algo- 155

rithm in Section IV. In Section V, we introduce the evaluation 156

measures for hierarchical feature selection algorithms. In Sec- 157

tion VI, we present experimental results and analyze the effec- 158

tiveness of the hierarchical feature selection algorithm. Finally, 159

in Section VII, we conclude this paper. 160

II. PRELIMINARIES 161

In this section, we review the notation for rough sets and 162

fuzzy rough sets. 163

A. Rough Sets 164

Decision systems are fundamental in data mining and ma- 165

chine learning. Let I = 〈U,C,D〉 be a decision system, where 166

U is a nonempty set of finite objects (the universe), C is a 167

set of conditional attributes, and D is a set of decision at- 168

tributes. For each a ∈ C ∪ D, Ia : U → Va . Set Va is the value 169

set of attribute a, and Ia is an information function for each 170

attribute a. 171

R is an equivalence relation on U calculated by 172

IND(R) = {(x, y) ∈ U × U |∀a ∈ R, a(x) = a(y)} (1)

where x and y are indiscernible by attributes from R when 173

(x, y) ∈ IND(R). The equivalence relation partitions the uni- 174

verse into a family of disjoint subsets called equivalence classes. 175

The equivalence class including x is denoted by [x]R . We call 176

AS = 〈U,R〉 an approximation space. For any X ⊆ U , two sub- 177

sets of objects, called lower and upper approximations of X in 178

〈U,R〉, are defined as [39] 179

RX = {[x]R |[x]R ⊆ X} (2)

RX = {[x]R |[x]R ∩ X 
= ∅}. (3)

If RX 
= RX , X is a rough set in the approximation space; 180

otherwise, we say that X is definable. 181

The rough set theory described above can deal with datasets 182

that contain discrete values [39], [40]. However, most datasets 183

contain numerical attributes. The model of fuzzy rough sets is 184

an extended model to address this problem [41]. The theory of 185

fuzzy rough sets offers an effective way to model the vagueness 186

and imprecision presented in numerical data [28]. 187
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B. Fuzzy Rough Sets188

Let U be a nonempty and finite set of objects, and R be189

a fuzzy binary relation on U . We call FAS = 〈U,R〉 a fuzzy190

approximation space, where R is a fuzzy equivalence relation.191

∀x, y, z ∈ U , we have the following:192

1) reflexivity: R(x, x) = 1;193

2) symmetry: R(x, y) = R(y, x); and194

3) min–max transitivity: miny (R(x, y), R(y, z)) ≤ R(x, z).195

More generally, we say that R is a fuzzy T -equivalence re-196

lation if for ∀x, y, z ∈ U , R satisfies reflexivity, symmetry, and197

T -transitivity, that is, T (R(x, y), R(y, z)) ≤ R(x, z).198

Given fuzzy approximation space FAS = 〈U,R〉 and fuzzy199

subset X ⊆ U , fuzzy rough sets can be summarized as the fol-200

lowing four operators [42]:201

RS X(x) = inf
y∈U

S(N(R(x, y)),X(y))

RT X(x) = sup
y∈U

T (R(x, y),X(y))

RϑX(x) = inf
y∈U

ϑ(R(x, y),X(y))

RσX(x) = sup
y∈U

σ(N(R(x, y)),X(y)), (4)

where T , S, ϑ, and σ denote the fuzzy triangular norm (T -norm),202

fuzzy triangular conorm (T -conorm), T -residuated implication,203

and its dual, respectively, and N is a negator. The standard204

negator is defined as N(x) = 1 − x. Several fuzzy operators205

and their properties were introduced in [43]. Some typical fuzzy206

operators are listed as follows: SM (a, b) = max(a, b),207

TM (a, b) = min(a, b), ϑM (a, b) =

{
1, a ≤ b

b, a > b.
,

σM (a, b) =

{
0, a ≥ b

b, a < b.
.

Let I = 〈U,C,D〉 be a decision system, where U is a universe208

of objects, C is a nonempty set of conditional attributes with209

numerical values, and D is the decision attribute that divides the210

samples into subset {d1 , d2 , . . . , dl}. For all x ∈ U and if R is211

a fuzzy similarity relation, then we have212

di(x) =

{
0, x /∈ {di}
1, x ∈ {di}

. (5)

Then, the fuzzy rough approximations are computed as213

RS di(x) = inf
y /∈di

(1 − R(x, y))

RT di(x) = sup
y∈di

R(x, y)

Rϑdi(x) = inf
y /∈di

(
√

1 − R2(x, y))

Rσdi(x) = sup
y∈di

(1 −
√

1 − R2(x, y)). (6)

The lower and upper approximations use an equivalence re-214

lation to granulate the universe and generate Boolean elemental215

granules [28] in rough sets. A fuzzy rough set [41] is defined by216

TABLE I
DESCRIPTION OF SYMBOLS USED THROUGHOUT THIS PAPER

Fig. 1. Example of a tree-based hierarchical class structure.

two fuzzy sets, fuzzy lower and upper approximations defined 217

in (6) that are obtained by extending the corresponding crisp 218

rough set notions defined previously in (2) and (3) [24]. 219

III. FUZZY ROUGH SETS FOR HIERARCHICAL CLASSIFICATION 220

A number of learning algorithms have been developed based 221

on fuzzy rough sets [44], [45]. Large-scale data are not only 222

a rich source of information but also produce complex class 223

structures, such as hierarchies. It is interesting and challenging 224

to exploit such structures in modeling. 225

A. Hierarchical Classification 226

In this study, we are interested in a tree-based hierarchical 227

class structure. In all cases, the hierarchy imposes a parent- 228

child relationship among the classes, which implies that an 229

instance belonging to a specific class also belongs to all its 230

ancestor classes. Table I describes the most frequent symbols 231

used throughout this paper. 232

A taxonomy is thus typically defined as a pair (D,≺), where 233

D is the set of all classes and “≺” represents the “is-a” relation- 234

ship, which is the subclass-of relationship with the following 235

properties [13]: 236

1) Asymmetry: if di ≺ dj then dj ⊀ di for every di, dj ∈ D. 237

2) Antireflexivity: di ⊀ di for every di ∈ D. 238

3) Transitivity: if di ≺ dj and dj ≺ dk , then di ≺ dk for 239

every di, dj , dk ∈ D. 240

An example of a tree-based hierarchical class structure is 241

shown in Fig. 1. The root node Objects is not the real class of 242

each sample. 243

Example 1: In Fig. 1, we can obtain asymmetry and transi- 244

tivity of a tree-based hierarchical class structure as follows: 245

1) Asymmetry: Chair is a Seating, but Seating is not a Chair. 246

2) Transitivity: Chair is a Seating and Seating is a House- 247

hold. We can know that Chair is a Household. 248
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TABLE II
THREE STRATEGIES TO DEFINE POSITIVE AND NEGATIVE SAMPLES

TABLE III
EXAMPLE DATA

Fig. 2. Tree structure of example data.

B. Flat Classification and Hierarchical Classification249

In fuzzy rough sets, the fuzzy lower approximation depends250

on the nearest sample y from different classes of x. For con-251

venience, we call samples with the same class as x positive252

samples and call those from different classes as x negative sam-253

ples. The search scope of negative samples plays a crucial role254

in defining the lower approximation of fuzzy rough sets. There255

are several ways to define the positive samples and negative256

samples for training binary classifiers. We can use these strate-257

gies to compute the fuzzy lower approximation and fuzzy upper258

approximation. Table II gives three strategies to define positive259

and negative samples, and they are exclusive, inclusive, and260

sibling strategies.261

In flat classification, we do not consider the relationship262

among different classes. Therefore, the negative samples are263

not A if the positive sample is A. We call this an exclusive strat-264

egy [46], as described in the first row of Table II. Thus, only265

samples explicitly labeled with A as their most specific class are266

selected as positive samples, and everything else is considered267

as negative samples.268

Given a classification task, we have 12 samples listed in Ta-269

ble III. Each sample is characterized by a condition attribute A.270

d1 , d2 , d3 , d4 , d5 , and d6 are six classes.271

The positive class is the class of sample xi , and the negative272

class is the class different from xi . Compared with hierarchical273

classification, the flat classification approach is the simplest one274

that does not consider the hierarchy of the class.275

Hierarchical problems are particularly prevalent in large-scale276

datasets. We are interested in approaches that cope with a pre-277

defined class hierarchy. Fig. 2 shows the tree structure of Dtree,278

where Dtree is a tree-based hierarchical class with values d1 , d2 ,279

d3 , d4 , d5 , and d6 in Table III.280

According to the tree-based hierarchical class structure, there 281

is an “is-a” relationship between the parent and child nodes 282

to describe the parent-child relationship. The descendant cate- 283

gories of x are positive samples; therefore, it is not necessary to 284

consider these samples when the lower approximation is com- 285

puted. We call this an inclusive strategy [46], as described in 286

the second row of Table II, where des(A) denotes descendant 287

categories of class A. 288

Based on the tree-based hierarchical class structure, sib- 289

ling nodes with the same parent have a high fuzzy similar- 290

ity degree. Therefore, it may be effective to search for nega- 291

tive samples within only the sibling nodes called the sibling 292

strategy. The sibling strategy [47] is listed in the third row 293

of Table II, where sib(A) denotes sibling categories of class 294

A. We can use this hierarchical information to decrease the 295

search scope of the negative samples and reduce the algorithm’s 296

complexity. 297

We use the following example to compare the exclusive strat- 298

egy with flat classes and the inclusive and sibling strategies with 299

hierarchical classes. 300

Example 2: Continuing with Example 1, we give an intu- 301

itive interpretation of different positive and negative samples in 302

Fig. 1. 303

We have the following results according to different strate- 304

gies. 305

1) Exclusive strategy: The positive sample is Chair if we let 306

A be Chair. That is, pos(A) = {5}. The negative samples 307

are not Chair, that is, neg(A) = {1, 2, 3, 4, 5, 7}. 308

2) Inclusive strategy: The positive samples are Seating, 309

Chair, and Sofa, that is, pos(A) = {5, 6, 7}. The nega- 310

tive samples are neg(A) = {1, 2, 3, 4}. 311

3) Sibling strategy: The positive sample is Chair if we let A 312

be Chair. The negative samples are sib(A) = {7}. 313

In fuzzy rough sets, the fuzzy lower approximation of a sam- 314

ple is computed from the nearest sample to xi in classes different 315

from xi , which means the nearest negative sample. In this tree 316

hierarchical structure, the nearest sample is in the descendant, 317

ancestor, and sibling categories. From Table II, the descendant 318

categories are usually positive samples. Therefore, we use the 319

sibling strategy to select negative samples. For example, the 320

nearest negative sample to Chair is Sofa, which is consistent 321

with an intuitive interpretation. 322

C. Fuzzy Rough Sets for Hierarchical Classification 323

Classification is one of the most important problems in data 324

mining, machine learning, and statistical pattern recognition. 325

Related research has focused on flat classification problems, 326

which are standard binary or multiclass classification prob- 327

lems [48]. The lower approximation of classical fuzzy rough 328

sets is the minimum distance of a sample from the different 329

classes, and the upper approximation is the maximum distance 330

in the same class [49]. Generally, we focus on traditional datasets 331

with nonhierarchical classes. Therefore, the same classes of x 332

exclude every instance except for those that have exactly the 333

same class as x (and not those that are more general or more 334

specific). 335
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Nowadays, in some important applications, there are several336

hierarchical classification problems. The hierarchy defines an337

inheritance (IS-A) relationship between the class nodes, where338

each class is a special case of its parent class [46]. Any class is a339

special case of each ancestor class, where an ancestor is any class340

along the path from the class to the root of the hierarchy. Now,341

we consider the fuzzy lower approximation of classification for342

hierarchical classes.343

The tree-based hierarchical class structure can be formulated344

as 〈U,C,Dtree〉, where U is a universal set of objects, C is a345

nonempty set of conditional attributes, and Dtree is the decision346

attribute that divides the samples into subsets {d1 , d2 , . . . , dl}.347

l is the number of classes. Dtree satisfies a pair (Dtree,≺), which348

is introduced in Section III-A. R is a fuzzy similarity relation349

on U generated with features B ⊆ C.350

There are several methods for defining the set of positive351

(same) and negative (different) classes in Table II. We can use352

these strategies to define the approximation of fuzzy rough sets353

for hierarchical classification. Traditional classification deals354

with nonhierarchical classes, which is flat classification. We call355

this the exclusive strategy. The lower and upper approximations356

are defined in (6).357

When inclusive strategy is considered, for all x ∈ U , we have358

di(x) =

{
0, x /∈ {des(di) ∪ di}
1, x ∈ {des(di) ∪ di}

. (7)

The fuzzy rough approximations are defined as359

RS inclusivedi(x) = inf
y /∈{des(di )∪di }

(1 − R(x, y))

RT inclusivedi(x) = sup
y∈{des(di )∪di }

R(x, y)

Rϑ inclusivedi(x) = inf
y /∈{des(di )∪di }

(
√

1 − R2(x, y))

Rσ inclusivedi(x) = sup
y∈{des(di )∪di }

(1 −
√

1 − R2(x, y)). (8)

When sibling strategy is considered, for all x ∈ U , we have360

di(x) =

{
0, x ∈ {sib(di)}
1, x ∈ {di}

. (9)

The fuzzy rough approximations are defined as361

RS siblingdi(x) = inf
y∈{sib(di )}

(1 − R(x, y))

RT siblingdi(x) = sup
y∈{di }

R(x, y)

Rϑ siblingdi(x) = inf
y∈{sib(di )}

(
√

1 − R2(x, y))

Rσ siblingdi(x) = sup
y∈{di }

(1 −
√

1 − R2(x, y)). (10)

Several properties of the fuzzy rough sets for hierarchical362

classification are as follows. Compared with the exclusive strat-363

egy, we have the following propositions when we consider the364

sibling strategy.365

Proposition 1: Given 〈U,C,Dtree〉, R is a fuzzy similarity 366

relation induced by B ⊆ C. Let di be a class of samples labeled 367

with i, for x ∈ U 368

RS siblingdi(x) ≥ RS di(x)

Rϑ siblingdi(x) ≥ Rϑdi(x). (11)

Proof: Suppose that ysi is the sample with class ysi ∈ 369

sib(di), such that RS siblingdi(x) = 1 − R(x, ysi). Suppose 370

that yex is the sample with class yex ∈ Dtree\di , such that 371

RS di(x) = 1 − R(x, yex). Since sib(di) ⊆ Dtree\di , we have 372

R(x, ysi) ≤ R(x, yex). Therefore, RS siblingdi(x) ≥ RS di(x). 373

Analogically, we can also obtain Rϑ siblingdi(x) ≥ Rϑdi(x). � 374

Proposition 2: Given 〈U,C,Dtree〉, R is a fuzzy similarity 375

relation induced by B ⊆ C. If di is a class of samples labeled 376

with i and x ∈ U , we have 377

RT siblingdi(x) = RT di(x)

Rσ siblingdi(x) = Rσdi(x). (12)

Proof: Since RT di(x)=supy∈di
R(x, y) and RT siblingdi(x) 378

= supy∈di
R(x, y). Therefore, RT siblingdi(x) = RT di(x). Ana- 379

logically, we can also obtain Rσ siblingdi(x) = Rσdi(x). � 380

The sibling strategy and inclusive strategy have different pos- 381

itive and negative sample definitions. We have the following 382

proposition when we consider the sibling strategy and inclusive 383

strategy, respectively. 384

Proposition 3: Given 〈U,C,Dtree〉, R is a fuzzy similarity 385

relation induced by B ⊆ C. Let di be a class of samples labeled 386

with i, for x ∈ U 387

RS siblingdi(x) ≥ RS inclusivedi(x)

RT siblingdi(x) ≤ RT inclusivedi(x)

Rϑ siblingdi(x) ≥ Rϑ inclusivedi(x)

Rσ siblingdi(x) ≤ Rσ inclusivedi(x). (13)

Proof: Suppose that ysi is the sample with class from 388

sib(di), such that RS siblingdi(x) = 1 − R(x, ysi). Suppose 389

that yin is the sample with class from Dtree\{des(di) ∪ di}, 390

such that RS inclusivedi(x) = 1 − R(x, yin). Since sib(di) ⊆ 391

Dtree\{des(di) ∪ di}, we have R(x, ysi) ≤ R(x, yin). Thus, 392

RS siblingdi(x) ≥ RS inclusivedi(x). Analogically, we can also ob- 393

tain Rϑ siblingdi(x) ≥ Rϑ inclusivedi(x). 394

Suppose that ysi is the sample with class from di , such 395

that RT siblingdi(x) = R(x, ysi). Suppose that yin is the sam- 396

ple with class from {des(di) ∪ di}, such that RT inclusivedi(x) = 397

R(x, yin). Since di ⊆ {des(di) ∪ di}, we have R(x, ysi) ≤ 398

R(x, yin). Thus, RT siblingdi(x) ≤ RT inclusivedi(x). Analogi- 399

cally, we can also obtain Rσ siblingdi(x) ≤ Rσ inclusivedi(x). � 400

According to Propositions 2 and 3, we can obtain 401

RT di(x) ≤ RT inclusivedi(x)

Rσdi(x) ≤ Rσ inclusivedi(x). (14)
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Proposition 4: Given 〈U,C,Dtree〉, R is a fuzzy similarity402

relation induced by B ⊆ C. Let di be a class of samples labeled403

with i, for x ∈ U404

RS inclusivedi(x) ≥ RS di(x)

Rϑ inclusivedi(x) ≥ Rϑdi(x). (15)

Proof: Suppose that yin is the sample with class405

from Dtree\{des(di) ∪ di}, such that RS inclusivedi(x) =406

1 − R(x, yin). Suppose that yex is the sample with407

class yex ∈ Dtree\di , such that RS di(x) = 1 − R(x, yex).408

Since Dtree\{des(di) ∪ di} ⊆ Dtree\di , we have R(x, yin) ≤409

R(x, yex). Thus, RS inclusivedi(x) ≥ RS di(x). Analogically, we410

can also obtain Rϑ inclusivedi(x) ≥ Rϑdi(x). �411

Proposition 5: Given 〈U,C,Dtree〉, R1 and R2 are two fuzzy412

similarity relations induced by B1 and B2 , respectively, and413

R1 ⊆ R2 . Let di be a class of samples labeled with i, for x ∈ U414

R1S siblingdi(x) ≥ R2S siblingdi(x)

R1T siblingdi(x) ≤ R2T siblingdi(x)

R1ϑ siblingdi(x) ≥ R2ϑ siblingdi(x)

R1σ siblingdi(x) ≤ R2σ siblingdi(x). (16)

Proof: The proof is straightforward. �415

We give the following example to compare the computation416

among three strategies on the intermediate nodes. For simplifi-417

cation, we use the model defined with T -norm and T -conorm418

operators. For comparing with the flat algorithm in [28], we419

use the same function, the Gaussian function, to compute fuzzy420

similarity relations R, and the parameter σ is set to 0.2421

R(x, y) = exp
(
−||x − y||2

σ

)
, (17)

where ||x − y|| is the distance between x and y.422

Example 3: We give an example of computing fuzzy lower423

approximation based on different strategies with the data listed424

in Table III. We select x3 with class d2 to compute the lower425

approximation. For exclusive strategy426

RS d2(x3) = inf
y /∈{d2 }

(1 − R(x3 , y))

= inf
y∈{d1 ,d3 ,d4 ,d5 ,d6 }

(1 − R(x3 , y))

= 1 − exp
(
−||x3 − x2 ||2

0.2

)
= 0.0242. (18)

As to the inclusive strategy427

RS inclusived2(x3) = inf
y /∈{des(d2 )∪d2 }

(1 − R(x3 , y))

= inf
y /∈{d2 ,d1 ,d3 }

(1 − R(x3 , y))

= inf
y∈{d4 ,d5 ,d6 }

(1 − R(x3 , y))

= 1 − exp
(
−||x3 − x7 ||2

0.2

)
= 0.0695.

(19)

Fig. 3. Example of sibling relationship.

As to the sibling strategy 428

RS siblingd2(x3) = inf
y∈{sib(d2 )}

(1 − R(x3 , y))

= inf
y∈{d5 }

(1 − R(x1 , y))

= 1 − exp
(
−||x3 − x9 ||2

0.2

)
= 0.1201. (20)

We have RS siblingdi(x) ≥ RS inclusivedi(x) ≥ RS di(x). 429

In this example, we should compute the samples y ∈ 430

{d1 , d3 , d4 , d5 , d6} when we use the exclusive strategy and the 431

samples y ∈ {d4 , d5 , d6} when we consider the inclusive strat- 432

egy. We need to compute the samples y ∈ {d5} for the sibling 433

strategy. This can significantly reduce the computation time, 434

especially for large datasets. 435

IV. HIERARCHICAL FEATURE SELECTION 436

Feature selection is an indispensable preprocessing step of 437

high-dimensional data classification [50], and can help to iden- 438

tify redundant or correlated features [51]. Fuzzy rough set theory 439

is an effective method for selecting feature subsets using the de- 440

pendencies between the decision and condition attributes. These 441

dependencies can identify effective features for classification. 442

The two main steps in any feature selection algorithm are feature 443

evaluation and the search strategy. 444

The inclusive strategy and sibling strategy discussed above 445

have their own advantages. The inclusive strategy reduces the 446

computational complexity when we consider the intermediate 447

nodes. In this paper, we consider the leaf nodes to be real classes 448

and use the sibling strategy to select the feature subset. The min- 449

imum distance of a sample from different classes is a critical 450

factor in feature selection. Fig. 3 shows the hierarchical struc- 451

ture of classes. In this hierarchical structure, there are common 452

characteristics among the sibling classes because they share a 453

parent node. Thus, we select the nearest negative samples from 454

the sibling nodes, which is consistent with an intuitive interpre- 455

tation. 456

Definition 1: Given a hierarchical classification problem 457

〈U,C,Dtree〉, R is the T− equivalence relation on U computed 458

with the distance function R(x, y) in the feature space B ⊆ C. 459

Dtree = {d0 , d1 , d2 , . . . , dl}, where d0 is the root of the tree and 460

it is not the real class. U is divided into {d1 , d2 , . . . , dl} with the 461

decision attribute, where l is the number of classes. The fuzzy 462
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positive region of Dtree in term of B is defined as463

POSS
B sibling

(Dtree) = ∪l
i=1RS siblingdi. (21)

Definition 2: Given a classification problem 〈U,C,Dtree〉, R464

is the T -equivalence relation on U computed with the distance465

function R(x, y) in the feature space B ⊆ C, and U is divided466

into {d1 , d2 , . . . , dl} with the decision attribute, where l is the467

number of classes. The quality of the classification approxima-468

tion is defined as469

γS
B sibling

(Dtree) =
| ∪l

i=1 RS siblingdi |
|U | . (22)

As RS siblingdi(x) = inf
y∈sib(di )

(1 − R(x, y)), we get that470

| ∪l
i=1 RS siblingdi | =

|U |∑
j=1

l∑
i=1

RS siblingdi(xj ). (23)

Let xj /∈ di , we have RS di(xj ) = 0. We also have471

RS siblingdi(xj ) = 0 according to Proposition 1. Thus, we have472

|U |∑
j=1

l∑
i=1

RS siblingdi(xj ) =
|U |∑
j=1

RS siblingd(xj )

=
|U |∑
j=1

inf
xj ∈d,y∈sib(d)

(1 − R(xj , y))

(24)

where d is the class label of xj .473

The coefficients of classification quality reflect the approxi-474

mation ability of the approximation space or the ability of the475

granulated space induced by feature subset B to characterize476

the decision [28]. These coefficients can evaluate the condition477

attribute with degree γS
B (Dtree), and reflect the dependence be-478

tween the decision and condition attributes. The monotonicity479

approximations are given by Theorem 1, which applies to both480

sibling strategy and inclusive strategy.481

Theorem 1: Given a hierarchical classification problem482

〈U,C,Dtree〉, R1 and R2 are two fuzzy similarity relations in-483

duced by B1 and B2 , respectively, and R1 ⊆ R2 , we have484

POSS
B1

(Dtree) ⊆ POSS
B2

(Dtree). (25)

Proof: Let di be a class of samples labeled with i, for x ∈ U ,485

we have R1S di(x) ≥ R2S di(x) since R1 ⊆ R2 . We can de-486

rive that POSS
B1

(Dtree) ⊆ POSS
B2

(Dtree) since POSS
B (Dtree) =487

∪l
i=1RS di . �488

According to Definition 2 and Theorem 1, we have489

γS
B1

(Dtree) ≤ γS
B2

(Dtree). (26)

In a feature selection algorithm, feature evaluation quantifies490

how good the feature subset is, and search strategies are used491

to identify the optimal feature subset. First, we evaluate each492

feature according to its dependence coefficient and rank them493

in terms of feature quality. Then, we select the best feature and494

delete redundant features to further reduce the computation time.495

A fuzzy rough sets based feature selection algorithm for hi-496

erarchical classification (FFS-HC) is illustrated in Algorithm 1.497

Algorithm 1 A fuzzy Rough Sets Based Feature Selection
Algorithm for Hierarchical Classification (FFS-HC).

Input: 〈U,C,Dtree〉
Output: A feature subset B

1: B = ∅; CD = ∅;
//Addition

2: CA = C;
3: while (γS

C (Dtree) − γS
B (Dtree) < δ)) do

4: for each a ∈ CA do
5: Compute γS

a∪B (Dtree) according to SSFE;
6: end for//Delete the redundant features
7: if B == ∅ then
8: for each a ∈ CA do
9: Select feature adel is smaller than the average

γS
a (Dtree);

10: CD = CD ∪ adel;
11: end for
12: CA = CA − CD;
13: end if
14: Select a′ with the maximal γS

a ′∪B (Dtree);
15: B = B ∪ {a′};
16: CA = CA − {a′};
17: end while
18: return B;

The sibling strategy based feature evaluation (SSFE) of FFS-HC 498

is provided in line 5 in Algorithm 1, and the specific implemen- 499

tation of SSFE is illustrated in Algorithm 2. Dtree is a tree-based 500

hierarchical structure of the classes, and it is a global variable 501

that should be explicitly initialized. 502

We use a sibling-based relief algorithm to find the optimal 503

feature subset for comparing the flat feature selection with the 504

proposed hierarchical feature selection. The complexity of the 505

relief algorithm will become unacceptable when the number of 506

records in the dataset increases to a large scale. In general, the 507

size of the search space for the feature selection algorithm is 508

2|C |. Algorithm 1 deals with this issue effectively by deleting 509

redundant features to reduce the search space. 510

We consider two strategies in Algorithms 1 and 2 for reduc- 511

ing the search space. First, we can reduce the computing space 512

by using the sibling strategy, which is listed from lines 3–9 in 513

Algorithm 2. This strategy can reduce the computation time sig- 514

nificantly. Second, we compute the dependence of each feature 515

only once. We then delete the redundant features in the first 516

round, as described from lines 7–13 in Algorithm 1. 517

V. EVALUATION MEASURES 518

The proposed method is to deal with hierarchical classifi- 519

cation, which is different from flat classification. Accordingly, 520

the evaluation measures for the FFS-HC algorithm should be 521

different. Measures were introduced to evaluate hierarchical 522

classification in [13]. 523

Example 4: Fig. 1 shows the hierarchical classification sub- 524

tree of visual object classes (VOC) classification. We assume 525

that the true class for a test instance is Car and that two classi- 526

fication systems output Bus (Case 1) and Sofa (Case 2) as the 527
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Algorithm 2 Sibling Strategy Based Feature Evaluation
(SSFE).

Input: 〈U,C,Dtree〉, r = 0, and B
Output: r
1: for i = 1 to |U | do
2: Compute decision di of sample xi ;
3: Select samples Xsib with class sib(di);
4: if length(Xsib) == 0 then
5: Random select samples out of di as Xsib;
6: end if
7: for each y ∈ Xsib do
8: Compute 1 − R(xi, y);
9: end for

10: Select y′ such that RS siblingdi(xi) = 1 − R(xi, y
′);

11: r = r + 1 − R(xi, y
′);

12: end for
13: r = r/|U |;
14: return r;

predicted classes. These two errors are the same using flat eval-528

uation measures, and these two systems are punished equally.529

However, Case 2 is more severe because it makes a prediction530

in a different and unrelated subtree. Thus, the punishment for531

Case 2 should be larger than that for Case 1.532

In some cases, a sample can be classified into more than one533

class in the hierarchy. The pair-based measure and set-based534

measure are two main hierarchical evaluation measures.535

A. Pair-Based Measures536

As stated above, different classification errors result in dif-537

ferent levels of penalty. In our model, this penalty is defined by538

the tree distance, which is called the tree-induced error (TIE)539

in [52]. The TIE is computed by predicting label dv when the540

correct label is du541

TIE(du , dv ) = |EH (du , dv )| (27)

where EH (du , dv ) is the set of edges along the path from du542

to dv in the hierarchy, and | · | denotes the count of elements.543

That is, TIE(du , dv ) is defined to be the number of edges along544

the path from du to dv in the tree of D. TIE(du , du ) = 0,545

TIE(du , dv ) = TIE(dv , du ), and the triangle inequality always546

holds with equality.547

Example 5: Continuing with Example 4, the true class for a548

test instance is Car. The predicted class with Sofa is punished549

TIE(2, 7) = 5, which is larger than the punishment TIE(2, 3) =550

2 for the predicted class with Bus.551

B. Set-Based Measures552

Pair-based measures consider only a pair of predicted and553

true classes. Unlike pair-based measures, set-based measures554

take into account the entire sets of predicted and true classes,555

including their ancestors or descendants.556

Set-based measures have the following two distinct phases:557

1) the augmentation of D and D̂ with information on the 558

hierarchy; and 559

2) the calculation of a cost measure based on the augmented 560

sets. 561

The augmentation of D and D̂ is a crucial step that attempts 562

to capture the hierarchical relations of the classes. There are 563

different measures based on different augmented approaches 564

for the sets of predicted and true classes. We select the measure 565

that the sets are augmented with the ancestors of the true and 566

predicted classes [3], [53] as follows: 567

Daug = D ∪ anc(D)

D̂aug = D̂ ∪ anc(D̂). (28)

Hierarchical precision and recall are defined as follows: 568

PH =
|D̂aug ∩ Daug|

|D̂aug|

RH =
|D̂aug ∩ Daug|

|Daug| (29)

where | · | denotes the count of elements. The F1-measure is 569

defined as follows: 570

FH =
2 · PH · RH

PH + RH
. (30)

Continuing with Example 4, we can compute the hierarchical 571

precision, recall, and F1-measure of two cases. 572

Case 1: In Fig. 1, let D = {2} and D̂ = {3}, which means 573

that the true class of a test instance is Car and the predicted 574

class is Bus: Daug = {2, 1, 0} and D̂aug = {3, 1, 0}; PH = 0.67, 575

RH = 0.67, and FH = 0.67. 576

Case 2: In Fig. 1, let D = {2} and D̂ = {7}, which means 577

that the true class for a test instance is Car and the predicted class 578

is Sofa: Daug = {2, 1, 0} and D̂aug = {7, 5, 4, 0}; PH = 0.25, 579

RH = 0.33, and FH = 0.29. 580

C. Lowest Common Ancestor (LCA) F1 Measure 581

The set-based measure adds all the ancestors, and it has over 582

penalizing errors that occur to nodes with many ancestors. Kos- 583

mopoulos et al. [13] proposed LCA measures to deal with this 584

problem. The concept of LCA was defined in graph theory [54]. 585

The LCA of two nodes du and dv of a tree D, LCA(du , dv ), is 586

defined as the lowest node in D (furthest from the root), which 587

is an ancestor of both du and dv [13]. For example, in Fig. 1, 588

LCA(du , dv ) = 1 if du = 2 and dv = 3, which means that the 589

LCA of Car and Bus is vehicles. 590

Example 6: In Fig. 1, let D = {6} and D̂ = {7}. The LCA 591

of Chair and Sofa is only the node Seating. Thus, based 592

on LCA method, Daug = {6, 5} and D̂aug = {7, 5}. PLCA = 593

0.5, RLCA = 0.5, and FLCA = 0.5. However, based on hi- 594

erarchal method, Daug = {6, 5, 4, 0} and D̂aug = {7, 5, 4, 0}. 595

PH = 0.75, RH = 0.75, and FH = 0.75. 596

According to Example 6, redundant nodes can lead to fluctu- 597

ations in PLCA, RLCA, and FLCA. Thus they should be removed. 598
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TABLE IV
DATA DESCRIPTION

Fig. 4. Hierarchy of landscape branch of the SAIAPR dataset.

VI. EXPERIMENTAL ANALYSIS599

In this section, we first introduce four datasets used in our600

experiments. We then compare the proposed hierarchical feature601

selection with the flat feature selection proposed in [28]. All the602

numerical experiments are implemented in MATLAB R2014b603

and executed on an Intel Core i7-3770 running at 3.40 GHz with604

16.0 GB memory and a 64-bit Windows 7 operating system. We605

select the feature subsets on the training sets and test them on the606

test sets using an SVM, a KNN, and NB classifiers, respectively.607

For the SVM classifier, ten-fold cross-validation is performed608

using a linear kernel and c = 1. For the KNN classifier, we set609

parameter k = 5 for the class decision based on the preliminary610

experiments.611

A. Datasets612

Four datasets are used in the experiments. Basic statistics for613

these datasets are provided in Table IV.614

The first dataset is Bridges that is from the University of615

California-Irvine library [55].616

The second dataset is SAIAPR, which is an extension of IAPR617

TC-12 collection. Each image has been manually segmented618

and the resultant regions have been annotated according to a619

predefined vocabulary of labels; the vocabulary is organized620

according to a hierarchy of concepts. According to [56], an621

object can be in one of six main branches: “animal,” “landscape,”622

“man-made,” “human,” “food,” or “other.” Fig. 4 shows the623

“landscape” branch of the hierarchy.624

We use portions of the samples (1000, 5000, and 10 000) as625

a training set to select the feature subset, and use 5000, 10 000,626

and all samples as the test set to evaluate the effectiveness of627

the selected feature subset. According to Algorithm 1, 41 fea-628

tures are first selected from 512 features in three training sets629

containing 1000, 5000, and 10 000 samples, respectively; these630

features share some attributes. The number of shared attributes631

TABLE V
NUMBER OF SHARING ATTRIBUTES

TABLE VI
FLAT CLASSIFICATION ACCURACY (SVM)

Fig. 5. Hierarchy of the VOC dataset.

is listed in Table V. For example, the feature subset selected 632

from 5000 samples has 32 features that are identical to those in 633

the feature subset selected from 10 000 samples. The running 634

time when using 5000, 10 000, and all samples to test the 41 635

features selected in different subsets are 53, 190, and 13 500 s, 636

respectively. This demonstrates that using a portion of the sam- 637

ples to approximate the dependence coefficient of the samples 638

can essentially reduce the running time. 639

The results of flat SVM classification accuracy using different 640

sample subsets listed in Table VI confirm that it is not necessary 641

to use all samples to select features. In this study, we use 5000 642

samples to select a feature subset under the basic premise of not 643

affecting the classification accuracy. 644

The third dataset is PASCAL VOC, which is a benchmark in 645

visual object category recognition and detection that provides 646

the vision and machine learning communities with a standard 647

dataset of images and annotations [57]. Fig. 5 shows the hierar- 648

chy of VOC. In Table IV, there are 7178 samples for the training 649

dataset and 5105 samples for the testing dataset of PASCAL 650

VOC [57]. 651

Finally, the fourth dataset is News20 corpus, which was 652

collected and originally used for document classification by 653

Lang [58]. This dataset includes 18 446 messages collected from 654

20 different Netnews newsgroups. One thousand messages from 655

each of the 20 newsgroups were chosen at random and parti- 656

tioned by newsgroup name. The list of newsgroups from which 657

the messages were chosen is shown in Fig. 6. We use the “by- 658

date” version, which contains 951 documents evenly distributed 659

across 20 classes. After stemming and stop word removal, this 660

corpus contains 26 214 distinct terms [59]. 661
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Fig. 6. Hierarchy of the News20 dataset.

TABLE VII
FLAT EVALUATION ON DIFFERENT DATASETS

B. Flat Evaluation662

The performance evaluation measures of previous learning663

algorithms are those commonly used to describe the classifica-664

tion accuracy of SVM, KNN, and NB methods. We refer to these665

measures as flat evaluations because they do not consider the666

hierarchical classes. We first use classification accuracy listed667

in Table VII to visually compare the results of the proposed668

algorithm with those from a flat algorithm on different datasets.669

The best performance on each measure is highlighted in bold.670

From Table VII, we can identify the changes in accuracy with671

different numbers of selected features. We can also observe that672

the performance of the features selected by the hierarchical673

method is better than that of the flat method. In Table VII(a), it674

is clear that using 63.64% of features gives better performance675

than using all features on SVM and KNN classifiers. This means676

that we can obtain a set of representative features using only the677

Fig. 7. Comparison of accuracy between flat and hierarchical strategies.
(a) Bridges. (b) SAIAPR. (c) VOC. (d) News20.

sibling samples. These results prove the effectiveness of the 678

hierarchical selection method proposed in this paper. 679

There are 26 214 features in the News20 dataset. The flat 680

feature selection method takes almost three hours to select a 681

feature. It could not output its results within several days when 682

we select 500 features (1.91%× 26 214). Thus, we use “—” to 683

denote this condition in Table VII. In addition, from Table VII, 684

we can observe that the performance of KNN is not great. The 685

dataset of News20 is relatively sparse and may be inherently dif- 686

ficult to learn, as evidenced by the relatively poor performance 687

with all features. The accuracy of KNN is only 7.25% when all 688

features have been selected. Thus, KNN is not suitable for this 689

dataset. The accuracy of SVM classification is 40.03% when we 690

select 1.91% of features using the hierarchy method. 691

Fig. 7 compares the accuracy of SVM between flat and hier- 692

archical strategies on different datasets. The results of the ex- 693

periments show that our algorithm performs well with different 694

numbers of condition attributes. 695

C. Hierarchical Evaluation 696

We use SVM to evaluate our algorithm because the usual 697

measure of performance for such classifiers is the accuracy rate. 698

However, in hierarchical application problems, the output of 699

the hierarchical algorithm is part of the hierarchical classes, 700

which is different from the case of flat classes. Thus, we also 701

use hierarchical evaluation to evaluate the performance of our 702

algorithm. Table VIII presents the results of the hierarchical 703

and flat algorithms on different datasets evaluated by the TIE, 704

Hierarchical F1 , and LCA F1 measures. 705

We use TIE to consider some different errors caused by the 706

hierarchy. The “↓” after TIE indicates “the smaller the better.” 707

Hierarchical F1 and LCA F1 are set-based measures. The “↑” 708

after the set-based measures indicates “the larger the better.” We 709

describe the results of these three measures on four datasets in 710

Table VIII. In terms of effectiveness, hierarchical feature selec- 711

tion gives better performance than that of flat feature selection. 712
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TABLE VIII
HIERARCHICAL EVALUATION ON DIFFERENT DATASETS

TABLE IX
AVERAGE NUMBER OF SAMPLES IN THE SEARCH SPACE

The results demonstrate that our algorithm provides an efficient713

solution to finding a better subset of the features.714

In terms of the three measures in Table VIII, we observe the715

following:716

1) The value of TIE is related to the scale of the hierarchical717

structure of classes.718

2) The value of LCA F1 is less than that of Hierarchical F1 .719

This is because having many common ancestors tends to720

overpenalize errors. LCA F1 can avoid this type of error.721

3) These three measures for the quantitative hierarchical722

comparison results are consistent with the flat compar-723

ison results.724

D. Comparison of Efficiencies Between Flat and Hierarchical725

Strategies726

We now study the computational complexity of the flat and727

hierarchical strategies. Table IX lists the average number of728

samples in the search space when we compute the lower and729

upper approximations.730

For example, there are 7178 samples in VOC training dataset.731

The flat feature selection algorithm requires 6503 computations732

to select one feature. This is 90.6% of the size of VOC train-733

ing dataset. In contrast, the hierarchical strategy can select one734

Fig. 8. Number of different classes in VOC dataset.

Fig. 9. Running time comparison of the first feature selection between flat
and hierarchical strategies.

feature from only 276 computations, which is only 3.9% of all 735

the samples. The computational load is reduced from 98.0% 736

to 6.5% on SAIAPR. SAIAPR has 256 classes, and the sibling 737

strategy is an effective method for datasets with more classes. 738

These statistics lead us to the conclusion that the hierarchical 739

strategy clearly reduces the computational complexity. Exam- 740

ple 7 gives an intuitive understanding of the search space of the 741

sibling strategy. 742

Example 7: Fig. 5 shows a hierarchical structure of 20 743

classes. The Dog and Cat classes have a sibling relationship 744

in this hierarchical structure. Fig. 8 shows the number of differ- 745

ent classes in VOC training dataset. Using the exclusive strategy, 746

the negative samples of a Cat are all non-Cat samples. In con- 747

trast, when we use the sibling strategy, the negative samples of 748

a Cat are Dog samples. 749

We compare the efficiency of the flat algorithm and hierarchi- 750

cal algorithm. The running times for selecting the first feature 751

for both algorithms are shown in Fig. 9, where the unit of the 752

running time is second. From the results, we note that the hierar- 753

chical algorithm is an efficient algorithm in terms of the running 754

time. 755

The deleting strategy works well on large datasets. Table X 756

shows the comparison of running time used in selecting the 757

first feature and selecting other features. The running time for 758

selecting the first feature is 278.35s on SAIAPR. There is a 759

significant reduction from 278.35 to 41.43s. 760
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TABLE X
RUNNING TIME (S)

VII. CONCLUSIONS AND FUTURE WORK761

We have proposed a fuzzy rough set based feature selection762

algorithm for large-scale hierarchical classification. Based on763

the complicated data structure of modern datasets, we proposed764

a hierarchical feature selection method by considering the sib-765

ling strategy. We used the sibling nodes as the nearest samples766

from different classes to compute the fuzzy lower approxima-767

tion and evaluate the features. Two accelerating strategies were768

employed in the proposed algorithm. In addition, flat and hierar-769

chical evaluations were used to evaluate the effectiveness of the770

algorithm. Our advantage in terms of practical application is that771

we control the error rate artificially using the given hierarchi-772

cal class structure. Experimental results indicate the efficiency773

and effectiveness of the proposed algorithm. In particular, the774

proposed algorithm improves the classification performance by775

selecting the most relevant feature subset. In summary, this study776

suggests new research trends concerning fuzzy rough sets and777

hierarchical feature selection problems.778

The current implementation of the algorithm just considers779

tree structures of class labels. In fact, there are other complex780

structures in practices, such as directed acyclic graphs [18] and781

chain structures [60]. In the future, we will discuss feature se-782

lection algorithms for such tasks. In addition, the proposed al-783

gorithm just selects some informative features from the original784

set. However, discriminant information sometimes hides in the785

lower-dimensional combination of the high-dimensional fea-786

tures, where feature mapping or feature extraction is preferred.787

However, the proposed algorithm cannot achieve this objective.788

We are going to design techniques for hierarchical feature ex-789

traction in the future.790
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[22] C. Freeman, D. Kulić, and O. Basir, “Joint feature selection and hierar- 853
chical classifier design,” in Proc. Int. Conf. Syst., Man, Cybern., 2011, 854
pp. 1728–1734. 855

[23] J. Song, P. Zhang, S. Qin, and J. Gong, “A method of the feature selection 856
in hierarchical text classification based on the category discrimination and 857
position information,” in Proc. Int. Conf. Ind. Informat.-Comput. Technol., 858
Intell. Technol., Ind. Inf. Integration, 2015, pp. 132–135. 859
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