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Efficient Background Modeling Based on Sparse
Representation and Outlier Iterative Removal

Linhao Li, Ping Wang, Qinghua Hu, Senior Member, IEEE, and Sijia Cai

Abstract— Background modeling is a critical component for
various vision-based applications. Most traditional methods tend
to be inefficient when solving large-scale problems. In this
paper, we introduce sparse representation into the task of
large-scale stable-background modeling, and reduce the video
size by exploring its discriminative frames. A cyclic iteration
process is then proposed to extract the background from the
discriminative frame set. The two parts combine to form our
sparse outlier iterative removal (SOIR) algorithm. The algorithm
operates in tensor space to obey the natural data structure
of videos. Experimental results show that a few discriminative
frames determine the performance of the background extraction.
Furthermore, SOIR can achieve high accuracy and high speed
simultaneously when dealing with real video sequences. Thus,
SOIR has an advantage in solving large-scale tasks.

Index Terms— Alternating direction multipliers (ADMs)
method, background modeling, Markov random field (MRF),
principal component pursuit (PCP), sparse representation, tensor
analysis.

I. INTRODUCTION

HE background modeling of a video sequence is a

key part in many vision-based applications, such as
real-time tracking [1], [2], information retrieval, and video
surveillance [3], [4]. In a video sequence, some scenes will
remain nearly constant, even though they may be polluted
by noise [5]. The invariable aspect is the background.
A model for extracting the background is an important tool
that can help us handle a video sequence, especially one
taken in a public area [6]. Background modeling is also an
essential step in many foreground detection tasks [7]-[9].
Once the background is extracted, we can detect or even
track the foreground information by comparing a new frame
with the learned background model [4].
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There are two challenges to a background modeling
algorithm. First, although we consider the background to
be stationary, it is often interfered with by certain factors,
such as fluttering flags, waving leaves, or rippling water [10].
In addition, other issues, such as signal noise, sudden
lighting variations, and shadows [11], [12], may prevent us
from distinguishing the background from a video sequence.
Second, the data on practical problems are increasing with
the development of new technologies and improvements in
the equipment used. However, there is also an increasing
demand for efficient background modeling techniques, and
fast tracking of massive video sequences is required for
certain practical tasks like crime detection and recognition.
As a result, it has become an urgent task to develop an
efficient and robust algorithm for practical background
modeling.

A large number of background modeling methods have
been reported in the literature over the past decades. Most
researchers have regarded a series of pixel values as features
and set up pixel-wise models. Initially, each pixel-value series
is modeled using a Gaussian distribution, e.g., the single
Gaussian (SG) model developed in [13] and the multiple of
Gaussian (MOG) model developed in [14]. Some improved
Gaussian-based algorithms [15]-[17] also achieved a high
level of performance in the few years following the release of
the above models. In addition, clustering methods have also
been used to model a background, e.g., codebook [18], [19]
and time-series clustering [20]. Furthermore, a nonparametric
method was proposed in [21] and improved in [22], and has
shown a competitive performance. The Visual Background
Extractor (ViBe) was recently proposed in 2012 and later
improved, and performs better than most popular pixel-wise
techniques [8], [23]. These methods solve the background
problem by building a model for each pixel and initializing the
models during the training process. High accuracy is obtained
if sufficient training data are provided, but more training data
means additional training time.

Another type of modeling technique is to set up the
model at region level. Some works have focused on
the local region, and different local features have been
proposed [11], [24]-[26]. In addition, global-region-based
algorithms have also been proposed. Oliver et al. [27] first
modeled a background, using a principal component analy-
sis (PCA), i.e., they modeled the background by projecting
high-dimensional data into a lower dimensional subspace.
Robust PCA developed in [28] and principal component pur-
suit (PCP) developed in [29] have shown their superiority over
the original PCA. Based on these models, heuristic background
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The original video sequence

Fig. 1.

Framework of the SOIR algorithm.

methods have also been introduced [30], [31], [33]. These
PCA-based models omit the training process and use data
to extract the background directly. However, singular value
decomposition (SVD) is an inevitable time-consuming step in
a PCA-based model, and thus, these models are limited in
large-scale tasks because their speed and memory requirements
are all sensitive to the scale of the data.

Sparse representation and dictionary learning is
also an important region-based method. It is widely
employed in the tasks of computer vision, such as face
recognition [32], [34], [35], classification [34], [36], and
denoising [37]. Some researchers have introduced sparse
representation into background modeling [38], [39]. They
modeled the background by the dictionary and regarded the
foreground as noise. In addition, they made some assumptions
of independence among different pixels. However, these
assumptions fail in many practical tasks where the foreground
region is usually not sparse and some pixels are highly
correlated.

In this paper, first, we use sparse representation to reduce the
video size by exploring the discriminative frames of the video,
instead of modeling the background directly. No assumption is
needed in this process. We then extract the background from
these discriminative frames using a PCP-based cyclic iteration.
These two steps combine to form our algorithm, i.e., sparse
outlier iterative removal (SOIR) algorithm. The framework of
the algorithm is shown in Fig. 1.

SOIR meets the demand of global-region-based background
models on solving large-scale problems. For our algorithm,
we rebuild the PCP model based on a rank-1 hypothesis.
Moreover, our algorithm operates in a tensor space to
obey the natural data structure of the videos. We detect
foreground objects using the Markov random field (MRF)
once the background is extracted. Experimental results show
that our algorithm can achieve high accuracy and high
speed simultaneously when dealing with real-life video
sequences.

The main contributions of this paper are summarized as
follows.

1) We utilize sparse representation to reduce the size of the
video by exploring its discriminative frames. Instead of
using all frames to model the background, we simply
use the discriminative frames. In this way, our model
can meet the demands of many practical background
modeling problems in terms of speed and memory.

2) The cyclic iteration process is composed of a tensor-wise
model and a pixel-wise strategy. In a general case,
a tensor-wise process always considers the overall
information, whereas a pixel-wise process pays more
attention to particular information. Our algorithm
achieves high accuracy by taking full advantage of both
processes.

3) The tensor-wise model in the cyclic iteration is a
PCP model and is robust to general noises [29].
Differing from previous works, the vectorized static
background in our algorithm is explicit rank-1, instead
of just being low rank. To constrain this, we propose
a new space R™, where the background actually lies.
Owing to the rank-1 hypothesis, SVD is nonessential.

The remainder of this paper is organized as follows.

Section II introduces some preliminary works. Section III
provides the formulation and convergence of the SOIR
algorithm. Section IV presents the foreground detection
method. Section V describes the experimental results. Finally,
Section VI provides some concluding remarks regarding our
research.

II. PRELIMINARY WORK

The PCP model and tensor theory play key roles in our
algorithm. Here, we introduce some basic works of both.

A. Principal Component Pursuit

Low-rank matrix recovery is the key problem in many
practical tasks, including background modeling. A given data
matrix M is the superposition of a low-rank matrix L and
a sparse matrix S, i.e, M = L + S. PCA is an effective
way to solve this problem, but the brittleness of the original
PCA model with respect to grossly corrupted observations
jeopardizes its validity [29].

Candes et al. [29] recently proved that one can recover
matrix L and the sparse matrix S precisely under mild condi-
tions. This model, known as PCP, can be formulated as

min [|L[l« 4+ A[IS|1
L.,S

st.L+S=M (1)

where /4 is a regularization parameter and | - ||+ and
|11 denote the nuclear norm (sum of singular values) and the
[1-norm (sum of the absolute values of the matrix elements),
respectively.

Model (1) was modified to solve the background modeling
problem [31], [33]. All of the original works modeled the
background using a low-rank matrix. In contrast, we consider
the background as a rank-1 matrix.

B. Tensors Theory

A tensor is a multidimensional array. More formally,
an N-way or an N-order tensor is an element of the tensor
product of N vector spaces, each of which has its own coor-
dinate system [40], [41]. Intuitively, a vector is a first-order
tensor, while a matrix is a second-order tensor. In this paper,
in addition to the specific instructions, we denote vectors by



280 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 26, NO. 2, FEBRUARY 2016

lowercase letters, e.g., r, and matrices by uppercase letters,
e.g., R. In addition, a higher order tensor is denoted in
boldface type, e.g., R. The space of all tensors is denoted by
a swash font, e.g., R. We denote the space of all N-order
tensors by Ry, Ry = REKDxKnv N =123 4, ...

A tensor can be multiplied by a matrix, which is also known
as the n-mode (matrix) product [41]. The n-mode product of
tensor X € RK1XKN with matrix U € R/*Xi is denoted
by Xx;U andis of size K1 X+ X K;_1 X J X K11 x---xXKp.
Element wise, we have

(X Xi U)k],...,kifljki+1,...,kN = Z Xk],...,kN Ujk,' (2)
where k; € [1,...,K;]i=1,...,N); je[l,...

III. SPARSE OUTLIER ITERATIVE REMOVAL ALGORITHM

In this section, we focus on modeling the background of
a video sequence. We use D to denote a video and assume
that there are N frames in D. Each colorful frame is a third-
order tensor by nature, and the jth frame is denoted by

I, € R™™3 Then, D = [Ij,...,Iy] € Rmmx3xN,
In addition, we use B = [By,...,Br,] and A =
[Ag,,...,Aq,] to denote the background and foreground of

video D, respectively.

We first analyze the components of a video. In the video, the
background is covered by the foreground objects. We denote
the foreground region by Q, and the outside region by Q.
Let Po be an orthogonal projector onto the span of the
tensors vanishing outside of Q. Then, for an arbitrary frame I,
the (x,y,z)th component of Pq(l;) is equal to (L)), if
(x,y,z) € Q, and is zero, otherwise. Thus, the video can
be expressed as

D = P5(B) + Pa(A) 3)

where Pg(B) = [Pg(Br),...,PgB,)] and Po(A) =
[Pa(Ar), ..., Pa(Ary)]. Actually, Po(Ar,) = Ay, because Q
is simply the foreground region. The noise is also an aspect

D =P5B)+A+E “4)

where E is the noise. Equation (4) shows the actual compo-
nents of a video and is a strict constraint in our model.

A. Discriminative Exploration Using Sparse Representation

In most large-scale background modeling problems, the
frames are highly redundant. Some of the frames already carry
sufficient background information and are more discriminative
than other frames. In this section, we refine frame sequence D
and obtain a new informative set D, which is composed of the
selected discriminative frames.

We use sparse representation to explore the discriminative
frames by solving the maximum linearly independent group
of video frames. The sparse representation process, which is
robust to noise [34], is based on the video content. Once
a frame is represented by other frames, its content is no
longer discriminative. In a real-life video, the discriminative
frames are those whose foreground objects are different in both

airport
1000-
airport

1049

Fig. 2. Sparse representation process of a discriminative exploration. The
original frame set is composed of 50 frames (airport1000—airport1049 in the
Hall sequence from the I2R dataset), where the grid group indicates coefficient
matrix C.

position and appearance. Thus, we gain different background
information from different discriminative frames. Once a
sufficient amount of information is obtained, we can model
the background.

Now, we will introduce our sparse representation model.
Foreground objects move continually in a video sequence.
Two adjacent frames are usually approximately the same.
Some frames can be represented through a linear combination
of the remaining frames, and the other frames are usually
repeated. In other words, a series of frames can represent all
frames

min ID —D x4 Cll% + 2ICll1 2 )

where || - || is the Frobenius norm, which equals the square
root of the sum of squares of the entries of the tensor.
C € RV*VN g a coefficient matrix, and A is used to balance
the two parts. In addition, || - |12 is the /1 2-norm and is the
sum of the [r-norm of all the rows in C [42]. We solve this
model by converting it into an equivalent problem

min D —D x4 W|% + 2ICll1 2
w,C
s.t. W=C. (6)

This problem 1is the standard augmented Lagrange
formulation and can be solved using the alternating direction
multipliers (ADMs) method [43], [44].

The jth row of C records the coefficients of the jth frame
to represent other frames, and the jth column of C records
the coefficients of other frames to represent the jth frame.
We can then deduce the role of each frame by observing the
corresponding row in C. The frames whose coefficients are
all zero are regarded as redundant, and the NONZEro rows in C
correspond to discriminative frames. A new set D is formed
to contain all discriminative frames.

Fig. 2 shows our sparse representation process. A video
sequence equals a sparse linear combination of itself
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the worst outlier with
the purified-mean.

A€

The purified-mean frame

Fig. 3. Cyclic iteration process in an iteration.

plus errors. The color rows in the grid group indicate
the nonzero rows in C. The corresponding frames of
the nonzero rows in C are selected, i.e., the 10 frames
in Fig. 2, which contain almost all background information of
the 50 frames.

For most practical problems, the frames selected by (5) are
suitable for background modeling. However, some abnormal
behaviors and serious noise pollution of the video may lead
to more complicated relations among frames. For example,
in Fig. 2, if the woman in yellow jumps from left to right, more
frames will be considered discriminative. However, 10 frames
are sufficient for a background model. In this case, updating
D is essential. We do this based on coefficient matrix C , from
which we can measure the similarity between two frames.
If frame I, resembles frame I, the coefficient of frame I, is
close to 1 in representing frame Ip,; otherwise, it is far from 1.
First, we find the frame that resembles all other frames in D
the most. This is the first reselected frame. Next, we choose
the last similar frame of the first reselected frame. Then, every
time we choose a new frame, it is the last frame that all of the
previously selected frames resemble. Eventually, we choose a
new frame set in which the similarities among the members
are low. This set is the updated D. The appropriate number
of D will be explored experimentally.

After the sparse representation of the video, we refine the
original video D and form a new selected discriminative frame
set D. Assume that there are N framesinD : D € R’"X”X3XN
where N < N.

B. Background Extraction Using Cyclic Iteration Process

In this section, we describe the design of a background
extraction using a cyclic iteration (the outer loop in SOIR).
This process is shown in Fig. 3. In each iteration, we use a
PCP model to solve the purified-mean frame from the selected
discriminative frame set D, and in a pixel-wise outlier removal
strategy, we use the purified-mean frame to ameliorate the
selected discriminative frame set D conversely. The iteration
will continue until the purified-mean frames converge to
a fixed frame, which is the background.

1) Tensor-Wise PCP Model: The tensor model is
used to calculate the purified mean of the selected

discriminative frames. It is the mean of the frames initially,
but moves slightly away during the denoising process.
Following the idea of ADM, we solve this tensor model
through an iterative approximation (the inner loop in SOIR).
The solution is limited to an R™ space.

The purified-mean frame, denoted by B* : B* € Rm*nx3
is the optimal background of the current frame set D.
The real backgrounds of different frames are the same,
ie, By, =By, = B*,Vi # j, or

B=B"x4Z (7

where Z = (1, 1, ..., 1)T € R¥*! js a first-order matrix. B* is
regarded as a fourth-order tensor, i.e., B* € Rmxnx3x1

Constraint (7) in fact insists that the background is rank-1.
Just like the vectorizing process in [31], [35], and [39], we
transform the frames into gray-scales and combine mode-1
and mode-2 of each frame into a single mode. This means
that the operator vectorize(-) reduces the dimension of high-
dimensional data. After the vectorizing process, a video tensor
is transformed into a matrix, and a frame tensor is transformed
into a vector. The vectorized formulation of (7) is then

vectorize(B) = vectorize(B*) x Z

®)

where vectorize(ﬁ) € RP*N is a matrix, vectorize(B*) € R?
is a vector, and the 2-mode product (x») is the outer product
of the vectors. Thus, the equation reduces to the standard
definition of rank-1.

To solve (7), we consider a subspace of R4. We denote this
subspace by R™. All tensors in R™ are fourth-order tensors,
and for each tensor X in this space, element wise, we have
Xijka = Xijkb, Ya # b. Thus, B* must lie within this space.
RW is convex, and it is therefore easy to solve (7).

Lemma 1: Given tensor B, the solution to the problem

min B — B x4 Z|; ©)
is B* = ()L, Bj)/N. )

Proof: B — B* x4 Z|} = X\, By — B} =
N|B* (Z;V:I ﬁi,)/IVH% + const, where const and
N indicate constants. This completes the proof. [ ]

To model the background, we want the static video content.
We therefore minimize the changing part to group more
information into the background. In addition, we consider
strict constraints (4) and (7) and give our model

IA+E - Pa®)ll;

min
B,AE
st. D=P5B)+A+E
B=B"x,Z. (10)

In the foreground reglon we minimize the number of nonzero
clements in A + E — B; otherwise, such pixels can be
considered as background if A+E- B = 0. Outside the
foreground region, we minimize the noise E. Benefitting from
the definition of the /;-norm, we arrange the two regions into
a single formula, i.e., the objective function in (10).

Model (10) is a PCP model. To solve this model, we first
arrange it. The constraint B = B* x4 Z cannot be transformed
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into a single variable linear equation. We therefore use it as
a correctjgn _term. In gddition,~we denote all nonbackground
parts by S: S = A + E — Pq(B). We then obtain

min S|}, st D=B+S. (11)
B.,S

Model (11) can be solved by iteration [43] (the inner loop)
~ -~ Ak
S+l =7, D+ — —BY
m
Bi+! — P — §k+!
A+l Ak ,u(ﬁ _ Bkl §k+1)

12)

where 4 > 0 is a step-length parameter and A is the
Lagrange multiplier. In addition, 7(;/,)(-) is a soft-threshold
operator [43], [44]. For an arbitrary tensor X € RK1><xKy,
element wise, the operator is given by

1 1
71 (X)lq...kN = max (qu...kN — ;, O) —i—min(XklmkN —i—;, O).
/4
(13)

Here, we consider the correction term. The tensor B must
lie in the R® space. Once we obtain a new B in (12),
we project it into the R™ space and use its vertical projection
to replace itself. Thus, the updated formula of B¥*! in (12) is
replaced by

ﬁk+l — B*k+1, (B*k+1 . ﬁ . §k+1 — B*k+1 X4 Z) (14)

The result of the inner loop is the optimal background B*
of the current frame set D.

2) Pixel-Wise Strategy: Once we obtain the purified-mean
frame B* of the current frame set D, we use B* to renew the
current frame set D conversely. This is a pixel-wise method,
called outlier removal strategy. We repeat this strategy for all
the pixels in each frame. As an example, we then take the
pixel (x,y,z2) (x=1,...,m;y=1,....,n;z=1,2,3).

In Fig. 3, we have labeled pixel (x, y, z) in all the frames
with solid color points. Different colors indicate different pixel
values. When we locate these values in the axis, we find that
most of the values gather into a cluster, and others do not.
The outliers are the pixel values of the nonbackground pixels.
The purified-mean value and worst outlier are also marked
in the figure. The worst outlier is the value that is farthest
away from the purified-mean value.

The ground truth of the background is inside the cluster.
The purified-mean value is much closer to the ground truth
than the worst outlier. Thus, the extraction performance will
be improved if we use the purified-mean value to replace the
worst outlier. As shown in Fig. 3, once we extract a purified-
mean frame B*, we continue replacing the worst outlier with
the purified-mean value for each pixel. Here, replacing the
worst outlier means deleting the worst value and returning the
purified-mean value to the frame. Thus, frame set D is renewed
after the replacement is conducted for all pixels.

C. Algorithm Formulation

The methods in Sections III-A and III-B combine to
form our SOIR algorithm. In this algorithm, the sparse

Algorithm 1 SOIR Algorithm

Input: D € R™*"3xN,
Output: B*.
1:sparse representation:
get ﬁ, by solving:
min D —D x4 Cll7 + 21 Clh 2.
2:cyclic iteration:
while not converged do(outer loop) :
(1): update B*, by:
while not converged do(inner loop) :
S =T D+ A By
Bk+! — B’ikk+1’ where
B = (3L, (g, — S/
Ak+L Ak H(f) _BktL _ §k+1).
end while.
(2): update D (ﬁ = [I~1, ,fg]), by:
For pixel (x,y,2) _
N* = af_g_lzlaxﬂ(lf)xyz - BiyZL
then (In+)xyz = B},
End
end while.

representation model is an important aspect. It returns the
selected discriminative frames that carry sufficient background
information. The cyclic iteration process is the main aspect,
which extracts the background of the video. The convergence
condition of the algorithm is ||B*T! — B¥||/|B¥| < le — 3.

D. Convergence Analysis

We will now describe the convergence of SOIR. The
convergence of a sparse representation model has been well
studied [45]. Thus, we focus on the convergence of the cyclic
iteration process. B

For an arbitrary pixel (x, y, z), there are N pixel values in
the selected set D. In the ith outer loop iteration, the minimum
and maximum of the N values are recorded as a; gnd b;,
respectively. B;;Z is the puriﬁed—meap of the N val-
ues in the last iteration, and thus, Bj’yz € laj—1,bi—1].
Iflim;_, 0 (b; — a;) = 0, the purified-mean ng,z will converge.
This can be inferred from the nested intervals theorem [46].
To complete the convergence, we prove the following lemma.

Lemma 2: In the SOIR algorithm, for an arbitrary pixel
(x,y, 2), the minimum and maximum of the N pixel values in
the ith iteration are recorded as a; and b;, respectively. we then
have lim;_, oo (b; — a;) = 0. B

Proof:  First, the purified-mean value B;Jyrzl is inside a
subinterval of the interval [a;, b;], because the value is simply
around the mean of all the N values in the last iteration.
Otherwise, if the mean of the N values is close to eitller their
minimum or maximum, we can conclude that the N values
are already close to each other [46].

Second, after N iterations, we record the minimum
and the maximum of all the N purified-mean values
(]~3i i = 1,2,..., IV) as ¢ and d, respectively.

xXyz?
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Fig. 4.
300 frames as the selected set.

Then, we have [a;, 5,b; 5] < [c,d], because the worst
outlier is replaced by the purified-mean value in each iteration,
and all of the N purified-mean values are in the interval
[c, d]. The subinterval [c, d] is shorter than the interval [a;, b;].
In other words, there is a constant ratio y : y < 1, subject to
(b § —air§) <y (bi —ai).

Finally, we assume that the original minimum and
maximum of the N values are a and b, respectively. Then
by —am) < 7 —a), by —any) < 77
b—a),..., (b5 — @1pni) < 7"(b —a),.... We know
that (b — a) is a constant, and p" is close to zero when n is
large. We then have lim;_, o (b; — @;) = 0, which completes
the proof. [ |

We have to point out that the derived solution may not be
the ground truth and is influenced by the property of the video.
The experiments in Section V will show that the solution is
pretty close to the ground truth if the video quality is not
too poor.

IV. FOREGROUND REGION DETECTION

Having computed the background tensor, as described
in Section III, we then detect the foreground region of the
video.

Background subtraction is a common method for detecting
the foreground region. We denote the result of the subtraction
by Fy, : Fr, = It — By, where Iy = Pg(By,) + A, + Ey, and
B;, = B* We found that the residual background exists only
in the foreground region, and outside this region nothing but
noise exists, that is

5)

EI]( 5

Fr — Ay, + Er, — By, inside the region Q
b= outside the region Q.

From (15), we can conclude that the background subtraction
method works depending on the properties of A, — By,
and Ey,, and the relationship between them. If the distribution
of Ay, — By, is different from that of Ej,, the background
subtraction will be an impactful way to detect the foreground.

We next explore the foreground region Q for an arbitrarily
given image Iy from the original frame set D. To simplify this
problem, we transform the color frame into gray one ([j).

(The Thirty Results)

(The Standard)

Background extracting results with the size of the selected set varying from 1 to 30. The standard background is extracted when using all the

We model the region using MRF, following [33], [47],
and [48].

First, we set up a matrix O to represent the foreground
region

0, = [1, (Apij #0 16)

0, (Apij =0.

The energy of Q can then be obtained using the Ising
model [47]

E Aa * Oij +
i,J iy j,x,yili—x|+]j—yl=1

where 1, and 1, are two positive parameters that penalize
O;j =1 and |0;; — Oy,| = 1, respectively.

Clearly, if we simply minimize the energy of the foreground
region €2, it will converge to an empty set, i.e.,, O = 0.
To avoid this, an important component of the objective
function is Pg(Fy,). In addition, the nonzero elements outside
the foreground region should also be minimized. Thus,
we have the following foreground detection model:

. 1
min > 5 (Ui — BLi)> + D ha * Oij
ij s,
0;;=0 i,j

- > Ab %10ij — Oxy|.
i, J,x,y:li—x[+[j—yl=<1

b * |0ij - 0xy| (17)

(18)

Model (18) can be rearranged as
. 1

rg}nz (/la — 5 (ij — (Blk)ij)z) * Oij + Ap % |A x3 Ol
ij ij

19)

where A is a projection tensor. The constant part of (18) is
omitted because it is insignificant in an optimization problem.
Model (19) is the standard form of a first-order MRF and can
be solved exactly using graph cuts [49].

V. EXPERIMENTAL ANALYSIS

In this section, we describe the performance evaluation
of our SOIR algorithm. To evaluate the algorithm, we will
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number is 750. (d) Original frame number is 900.

explore the appropriate number of discriminative frames
and test the performance and time consumption of the
algorithm. The experiments are conducted on real sequences
from public datasets, such as the Institute for Infocomm
Research (I2R) [24], flowerwall [50], Stuttgart Artificial Back-
ground Subtraction (SABS) [51], and Background Models
Challenge (BMC) datasets [52]. In addition, some public video
sequences from the Internet are also included in our experi-
ments. All experiments are conducted and timed in MATLAB
R2010a on a PC with a 3.20-GHz Intel(R) Core(TM) CPU
and 4 GB of RAM.

A. Number of Discriminative Frames

A major aspect of this paper is utilization of sparse repre-
sentation to reduce the size of the video. In this section, we
explore the appropriate number of discriminative frames.

First, we provide the details of our experiment on the
Bootstrap sequence of the I2R dataset. A scene from this video
takes place in front of a buffet. We use the first 300 frames
in the sequence as our original frame set D and measure
the performance of the SOIR algorithm when the number
of frames of the selected discriminative frame set D varies
from 1 to 30. For comparison, we need a standard background,
which we use all the 300 frames to extract.

The results are shown in Fig. 4. In the figure, we can see
that most of the extracted backgrounds are quite similar to the
standard, even when the number of frames is small. However,
it is a little disappointing that the counter is not recovered
exactly, even in our standard background. The two small
fuzzy areas are the spaces just in front of the buffet, where
people are continuously standing and taking the meal in nearly
every frame. We measure the relationship between the rate
of convergence and the number of discriminative frames, the
results of which are shown in Fig. 6(a).

—Bootstrap
Escalator
.g —hall
© + ShoppingMall
[0} - Video001
o
c
ol
R
©
~ee—— |
0 ...... !!7'7!"""7'!!"!!'vy L e e
0 10 20 30 40
number of the discriminative frames
(b)
0.5
—Bootstrap
Escalator
2 04 —hall
o 0.3 + ShoppingMall
(O3 - Video001
e
@ 0.2
o
T 1 ,
N
00 10 20 30 40
number of the discriminative frames
(@)

Relationship between the number and the performance (2). (a) Original frame number is 450. (b) Original frame number is 600. (c) Original frame

distance ratio
o
N

10 20 30
number of the discriminative frames

(a)

0.4 . .
—Bootstrap
Escalator
0.3 —hall
+ ShoppingMall
- Video001

distance ratio
o
N

number of the discriminative frames

(b)

Fig. 6. Relationship between the number and the performance (1). Distance
ratio is to divide the distance between the result and the standard by that
between the standard and the original of coordinate. (a) Distance ratio
of “Bootstrap”; (b) Distance ratios of various video sequences.

Next, we repeat the operations on some additional video
clips, i.e., the Escalator, Hall, and ShoppingMall sequences in
the I2R dataset, and a real video sequence in the BMC dataset.
The results of each video sequences (including Bootstrap) are
shown in Fig. 6(b).

We can observe from Fig. 6 that the performance is
not very high when the number of frames is small.
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from the I2R dataset and the BMC dataset.

However, it improves as the number of frames increases. When
the number of frames is larger than 20, the ratio tends to
become stable. The small fluctuation of each curve is caused
by the nonbackground information of each new frame;
however, the influence of this weakens after the frame is
processed using our algorithm. In addition, we also find that
the content of the video affects the results. In the Video0O1
sequence, the foreground region is small. Thus, a small amount
of frames already carry sufficient background information, and
the curve is smooth. However, in the Bootstrap sequence,
we use many more frames to deal with the changes in
illumination, although the 30 results shown in Fig. 4 all look
the same.

Finally, we also explore the appropriate number of discrim-
inative frames when the original frame number is larger, the
results of which are shown in Fig. 5. We can see that the
curve varies when the original number of frames increases
because the discriminative frames are different. However, the
distance ratio tends to become stable in all experiments when
the number of discriminative frames increases to around 35.
The ratio will improve if we use more frames, but the effect is
unremarkable. This means that 35 frames or so already carry
sufficient background information in most cases. If the content
of the video sequence is pretty simple, fewer frames will be
required, and oppositely, more frames will be needed if the
content is complex.

B. Experiments on the Time Consumption
In this section, we describe the time consumption of our
model when solving tasks of different sizes. The majority of

600 frames

900 frames

122.88

Experiments on different video sequences. The results are shown together with the time consumption (unit of time is seconds). The sequences are

traditional methods are used for sequences with resolutions of
around 150 x 150 and where the number of frames is usually
around 50. When the scale of the data increases, these methods
tend to become inefficient.

First, we focus on the number of frames of the sequence.
We extract the background in four levels, i.e., from the first
300 frames, the first 600 frames, the first 900 frames, and the
first 1200 frames. The results are shown in Fig. 7.

When dealing with sequences with larger numbers of frames
than usual, our model solves the background efficiently.
Hundreds of frames only cost us dozens of seconds. As the
number of frames increases, the precision of the extracted
background is improved. Temporary static motion is a problem
that exists in most traditional background modeling methods.
Once a person remains at a particular spot for a while,
he may be considered a part of the background in a short
video sequence. In our experiments, as the number of frames
increases, the problem of temporary stay is perfectly solved,
as illustrated in the results on the Hall sequence. We can also
see that the time consumption is nonlinear with the number
of frames. On the one hand, the uncertainty of a background
created by the temporary stay may cost some additional time.
On the other hand, the foreground content and noise also
influence the time consumption.

Next, we test our model on video sequences of both low
and high resolutions. We use four video sequences, the first
of which is from the BMC dataset, and the other three
are inter-section monitoring video sequences from a public
resource. We test our model on the first 50 frames and
150 frames of each sequence. The results are shown in Fig. 8.
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Experiments on the videos whose resolutions are much higher. The results are shown together with the time consumption (unit of time is seconds).

The resolutions are given out at the top of each column. The leftmost video is from the BMC dataset while the others are from the Internet.

TABLE I

1

TIME CONSUMPTION OF PCP, DECOLOR, SG, AND SOIR

video number PCP DECOLOR SG  SOIR
150 24.66 43.76 137  2.65
MovedObject 300 53.97 74.66 2.81 6.19
450 85.52 124.12 430 11.90
150 61.27 186.18 158  6.25
Bootstrap 300 124.61 491.57 343 7.5
450 207.56 902.26 543  10.59
150 64.57 144.28 2.00 3.5
hall 300 154.71 303.98 447 594
450 246.26 599.91 726  9.61
150 39.26 27.18 172 5.66
Campus 300 89.01 47.13 3.63 694
450 150.67 80.14 6.77  12.09
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The man-made video from the BMC dataset consumes the
least amount of time. In the later three real-life videos, the
time consumption increases as the resolution of each video
sequence increases. Our model spends dozens of seconds solv-
ing the high-resolution video sequences. In addition, we can
also conclude from Fig. 8 that the content of the video
sequence also influences the performance. In the third video,
the distant cars move slowly in the fixed lens owing to the
perspective, which is actually an approximation of temporary
stay. We can see that 150 frames are still insufficient to resolve
this phenomenon, and more frames are needed.

For comparison, we also examine the time consumption
of some additional methods. Because our model is a PCP
model, two PCP-based methods are included, i.e., the PCP [29]
and the detecting contiguous outliers in low-rank representa-
tion (DECOLOR) [33], which perform well for small-scale
problems. In addition, we also use the SG model [13], which
is currently the fastest method [3].

In the experiments, we use the MovedObject and Bootstrap
sequences from the flowerwall dataset, and the Hall and
Campus sequences from the I2R dataset. For each video
sequence, we use 150, 300, and 450 frames as the original
frame set to extract the background. As shown in Table I,

Fig. 9. Precision and recall of our method for the videos in the SABS dataset.

SG is the fastest, but its speed is maintained at the expense
of accuracy, which is lower than that of most other popular
methods [3].

SOIR is on average 10 times faster than other PCP-based
models and can almost reach the speed of SG. This level
of speed is because of the result of SOIR extracting the
background from the discriminative frames, instead of the
original frame set. When the scale of the data is large,
the major time consumption of SOIR is in exploring these
discriminative frames. Once they are obtained, however, we
can model the background quickly and precisely. In the next
section, we will show how the accuracy of our method is high
in dealing with real-life video sequences.

C. Detecting the Foreground

1) Evaluation of Artificial Dataset: In this section,
we provide the evaluation results obtained using the SABS
dataset. Some approaches in [52] and [53] have been
evaluated on the SABS dataset, and their recall-precision
curves have been given. For a comparison of these curves,
we also evaluate our algorithm on the SABS dataset
and give the corresponding recall-precision curves of our
algorithm.



LI et al.: EFFICIENT BACKGROUND MODELING BASED ON SPARSE REPRESENTATION AND OUTLIER ITERATIVE REMOVAL 287

original image background  ground truth

| i é

o g
- l,...-:n.

DECOLOR RDL

PCP

MOG

Fig. 10. Results of detecting the foreground. From left to right: original image, exacted background by SOIR, ground truth, SOIR, PCP, MOG, DECOLOR,
RDL. From top to bottom: (a) Camouflage (b00251, flowerwall), (b) Curtain (Cur-1 tain22772, 12R), (c) hall (airport2180, 12R), (d) ShoppingMall
(ShoppingMall1980, 12R), (e) WavingTrees (b00247, flowerwall), (f) Escalator (airport4595, 12R), (g) ForegroundAperture (b00489, flowerwall).

In Fig. 9, the curves are evaluated on different scenes in the
SABS dataset. Our method performs well for most scenes,
especially in the Basic and Camouflage sequences. The
performance for the LightSwitch sequence is not very good.
As shown in [52] and [53], the light switch in the video is a
huge challenge for most foreground detection methods.

2) Evaluation on Real Scenes: We compare the perfor-
mance of our method with those of some other studies,
ie., MOG [14], PCP [29], DECOLOR [33], and robust
dictionary learning (RDL) [39]. Here, the fastest SG is not
included, because its accuracy is lower than the accuracy of
most popular methods [3]. Thus, we use a more complex
Gaussian model, i.e., MOG. We use the video sequences from
the I2R and flowerwall datasets and compare the detected
foreground region with the given hand-segmented foreground
region. The test frame is chosen randomly from all hand-
segmented frames. To avoid the influence of a temporary stay,
we use 250 frames, the last of which is the test frame.

The sequences and results are shown in Fig. 10. In the exper-
iments, SOIR can extract the background exactly for almost all
of the sequences and is robust to noise. In video sequence (g),
the man remains at the same spot in all 250 frames. We can
see that our algorithm is robust to noise and performs well in
foreground detection, which benefits from the accurate results
of the background and the MRF model. DECOLOR also
performs well because it also models the foreground using the
MRF model. In most sequences, the results of SOIR are better
than those of DECOLOR, because the extracted backgrounds
of our algorithm are more exact.

TABLE 11
F-MEASURES OF THE SEQUENCES SHOWN IN FIG. 10
Sequence SOIR PCP MOG  DECOLOR RDL
(a) 0.9737 0.6110  0.2047 0.5669 0.1170
(b) 0.9020 0.7129 0.3841 0.8244 0.7326
(c) 0.8452  0.6986  0.5406 0.7225 0.6160
(d) 0.8314 0.5248 0.2498 0.6439 0.5367
(e) 0.8170  0.6046  0.4014 0.8966 0.3476
® 0.7972  0.5902  0.2455 0.6487 0.2399
(2) 0.6382 0.5104 0.1962 0.3941 0.5409

To quantitatively evaluate the performance of the different
algorithms, we compute the F-measure, which is derived from
the precision and recall and is computed as

2 x precision x recall

F-measure = (20)

precision + recall

Table II shows the F-measures of all detected foreground
regions in Fig. 10. We can see that the results of SOIR are
better than those of the other four methods for six sequences,
ie., Fig. 10(a)-(d), (f), and (g). However, it is a little
worse than DECOLOR in the sequence in Fig. 10(e). We
can also see that the performance of SOIR varies among
the different video sequences. On the one hand, this is
due to the result of the background extraction, which is
the case for the sequence in Fig. 10(g). On the other
hand, the instability of the background also affects the
performance of SOIR.
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VI. CONCLUSION

In this paper, we propose an SOIR algorithm to model

the

background of a video sequence. We find that a few

discriminative frames are already sufficient to model the
background. We use the sparse representation process to
reduce the size of the video. Although it takes our algorithm
some time to explore the discriminative frames, it saves much
more time in modeling the background. A cyclic iteration
process is proposed for background extraction. SOIR achieves
both high accuracy and high speed simultaneously when
dealing with real-life video sequences. In particular, SOIR has
an advantage in solving large-scale tasks.

As future work, we will deal with some additional complex
problems in which the background is no longer stable among
different frames.
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