3504

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 28, NO. 12, DECEMBER 2018

Distribution Sensitive Product Quantization

Linhao Li, Qinghua Hu

Abstract—Product quantization (PQ) seems to have become
the most efficient framework of performing approximate nearest
neighbor (ANN) search for high-dimensional data. However,
almost all existing PQ-based ANN techniques uniformly allocate
precious bit budget to each subspace. This is not optimal, because
data are often not evenly distributed among different subspaces.
A better strategy is to achieve an improved balance between
data distribution and bit budget within each subspace. Moti-
vated by this observation, we propose to develop an optimized
PQ (OPQ) technique, named distribution sensitive PQ (DSPQ)
in this paper. The DSPQ dynamically analyzes and compares
the data distribution based on a newly defined aggregate degree
for high-dimensional data; whenever further optimization is
feasible, resources such as memory and bits can be dynamically
rearranged from one subspace to another. OQur experimental
results have shown that the strategy of bit rearrangement based
on aggregate degree achieves modest improvements on most
datasets. Moreover, our approach is orthogonal to the existing
optimization strategy for PQ; therefore, it has been found that
distribution sensitive OPQ can even outperform previous OPQ
in the literature.

Index Terms— Distribution sensitive product quantization
(DSPQ), approximate nearest neighbor (ANN), bit allocation,
aggregate degree.

I. INTRODUCTION

EAREST neighbor (NN) search is a fundamental tool in

many computer vision and pattern recognition applica-
tions such as image classification [1]-[3], image and video
retrieval/tracking [4], [5], object recognition [6] and so on.
However, the computational complexity of NN search is pro-
hibitive; in recent years, approximate nearest neighbor (ANN)
search [7]-[9] has become an attractive computationally effi-
cient alternative to NN search. The basic idea behind ANN is
to encode the observation data into a certain number of codes.
Then the actual distance between original data samples can
be approximated by the distance metric calculated by their
corresponding codes. Such strategy reflects the fundamental
tradeoff between search performance (e.g., accuracy) and
computational resources (e.g., the cost of calculation and the
memory requirement).

Manuscript received February 2, 2017; revised May 23, 2017 and
June 29, 2017; accepted September 18, 2017. Date of publication October 4,
2017; date of current version December 4, 2018. This work was supported by
the National Natural Science Foundation under Grant 61732011. This paper
was recommended by Associate Editor M. Cagnazzo. (Corresponding author:
Qinghua Hu.)

L. Li, Q. Hu, and Y. Han are with the School of Computer Science
and Technology and the Tianjin Key Laboratory of Cognitive Comput-
ing and Application, Tianjin University, Tianjin 300350, China (e-mail:
huqginghua@tju.edu.cn).

X. Li is with the Lane Department of Computer Science and Electrical
Engineering, West Virginia University, Morgantown, WV 26506-6109 USA.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSVT.2017.2759277

, Senior Member, IEEE, Yahong Han™', and Xin Li, Fellow, IEEE

Hash learning and vector quantization are likely to be the
two most common encoding techniques to solve the ANN
problem. In hash learning [10]-[14], data are encoded into
short codes - known as hash codes whose length is much
shorter than the dimension of original data. Hash learning
is often considered sufficiently efficient for ANN [15], [16];
however, information loss is inevitable during the encoding
process (i.e., when data are projected onto a low-dimensional
space). In vector quantization (VQ) [17]-[19], each data sam-
ple is classified into a certain cluster based on its distance to
a representative codeword (a.k.a. centroid). Then, the distance
between different data samples is approximated by the distance
calculated for their representative codewords. Compared with
hash learning, vector quantization achieves higher accuracy
in most situations; however, VQ quickly becomes impracti-
cal [19], [22]-[26] as the dimensionality of data increases (this
has been known as the curse of dimensionality in the
literature).

To overcome the above difficulty, Jégou et al. proposed a
divide-and-conquer solution called product quantization (PQ)
technique for handling high-dimensional data in 2011 [19].
The data space is first decomposed into M low-dimensional
subspaces and they are concatenated by using a Cartesian
product. Then data are quantized in each subspace sep-
arately; with affordable computational resources, PQ can
achieve a much more optimized quantization performance
than original VQ in high-dimensional space [27]-[33]. More
recently, various strategies have been proposed to improve
product quantizers [24], [25], [34]-[37] - e.g., Gong et al.
discussed the optimization problems of the centroid in a binary
space [23]; significant improvements can be observed when
an optimized projection is introduced to the original data
space, which led to the development of Optimized Product
Quantization (OPQ) [24], [38] and its equivalent Cartesian
k-means [36]; other ideas can be found in [25], [37], and [39].
As of today, OPQ developed in 2014 is considered a most
effective divide-and-conquer quantizing framework on many
datasets.

In all above-mentioned algorithms, bit budget is allocated
uniformly to each subspace. However, uniform allocation of bit
budget is not optimal in many cases. For example, when data
in one subspace are distributed around some cluster centers
and those in another subspace are scattered throughout the
entire subspace, encoding them using the same code-length is
no longer desirable. From a source coding perspective, it is
often much easier to compress centrally-clustered data than
dispersedly-distributed one; it follows a nonuniform allocation
of bits would better fit these two subspaces with varying
distributions. The mismatch between data distribution and bit

1051-8215 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-7765-8095
https://orcid.org/0000-0003-2768-1398

LI et al.: DSPQ

X Nizw cwaXis,

Sample:) Y
X1 X2 o e, X 1 X20, X220 can; x:,y.\

Codebook:
7
]
S T—

b [&
{} Encode{}
bi.. b b . b

Fig. 1. Comparison between PQ (left) and DSPQ (right). Note that the
method of space decomposition is the same in two competing methods
whereas the strategy of bit allocation is different (therefore the sizes of the
two codebooks are different).

21, X22 ..., x:;\

Represent

Represent

Codebook:

budget of each subspace is a key problem in the previous
PQ framework. It should be noted that such issue has been
addressed in the pioneering work [19] where the authors
claimed that each subspace should have a comparable “energy”
on the average. When this assumption is violated, a strategy
of multiplying the data with a random orthogonal matrix
was proposed to “adjust” the natural structure of the data.
Furthermore, the optimization of such orthogonal matrix was
studied in OPQ [24], [38], which has resulted in state-of-the-
art quantization performance.

Can we address such mismatch issue without changing
the natural structure of the data? The answer is affirmative.
In this paper, we propose to adjust the bit allocation of each
subspace dynamically based on the varying characteristics of
data distributions. In order to quantify the varying character-
istics of data distributions, we have introduced a definition
of aggregation degree (AD) for a considered subspace and a
definition of matching index (MI) to reflect its expected quan-
tization “energy”. It can be rigorously shown that the optimal
bit rearrangement can be decided based on the ratios of the
corresponding matching index from the competing subspaces.
Such theoretical result naturally gives rise to an iterative bit
rearrangement algorithm, which is at the heart of the proposed
Distribution Sensitive Product Quantization (DSPQ) method.
We can also show how to solve ANN problem using DSPQ
and how to integrate the strategy of bit rearrangement with
existing OPQ to obtain a more powerful DS-OPQ scheme.
The main contributions of this paper are summarized below:

« We propose to dynamically sense the varying character-

istics of data distribution and by introducing aggregation
degree. Accordingly, the quantization “energy” is rep-
resented by the matching index. A sufficient condition
based on the ratio of matching indexes from different
subspaces is proved for the optimality of PQ design.

o We have develop an iterative bit-rearranging algorithm to

adjust the bit budget for each subspace. Such optimized
allocation of bit budget based on data distribution leads

3505

to a new PQ method called DSPQ which can be easily
implemented to solve ANN.

o« DSPQ can also be integrated with existing OPQ. DS-
OPQ can outperform OPQ (e.g., improved accuracy and
faster convergence speed) without changing the natural
structure of the data.

The remainder of the paper is organized as follows.
We introduce some background information and motivation
in Section II. The proposed technique, Distribution Sensitive
Product Quantization (DSPQ) and its extension (DS-OPQ) are
described in Section III. Extensive experimental results are
presented in Section IV. Finally, we make several concluding
remarks in Section V.

II. BACKGROUND AND MOTIVATION
A. Product Quantization

A vector quantizer, denoted by Q, is a function that maps
a L-dimensional vector x € X (X:{x € RL}) to another
vector Q(x) € C (C: {c(i),i € TI}), where ¢(i) and C are
known as centroid and codebook respectively. To minimize
the quantization error, Q assigns an arbitrary data point X to
its nearest centroid ¢(i (x)) by:

O(x) = argmin |x — c(i(x))|, (D
c(i)eC
where i(x) is the encoder of input vector x and c¢(-) is the
decoder [17].

In the formulation of PQ [19], for an integer factor M
that divides the dimension L, an L-dimensional vector can
be written as the concatenation of M subvectors: x =
{x1,--+ ,xp}. Thus, the input space is decomposed into M
subspaces accordingly and each subvector is quantized within
its subspace separately. The codebook of the original space is
therefore given by the concatenation of M sub-codebooks, i.e.,

C=C xCyx---xCpy, 2)

The training of PQ codebook is done by minimizing the
following objective function:
min Ix —e@)
C1,C2,...Cu ;

sit.e(i(x))eC=Cy xCyr x---xCy. 3)

where the sizes of all the M sub-codebooks are the same.

B. Optimized Product Quantization

Ge et al. [24], [38] proposed Optimized PQ (OPQ), which
optimizes PQ by minimizing the quantization distortions with
respect to the space decomposition and codebooks. By intro-
ducing a rotation matrix R: {R [R’R = I} for the centroid
c(i(x)), OPQ solves the codebook by solving the following
optimization problem:

o, in Z Ix — (i (x))]
s.t. c(i(x)) e C,

C={cli(x)) |Re(i(x)) €eCy xCy x ---xCp}. @)

3506

Subspace 2

Subspace 1

(a) original PQ (b) DSPQ

Fig. 2. Encoding manners of PQ and distribution sensitive PQ. (a) Each
subspace is encoded by 3 bits in original PQ. The size of codebook is
23 x 23 = 29 = 64 (b) The first subspace is encoded by 2 bits and
the second one is encoded by 4 bits. The size of corresponding codebook
is 22 x 24 = 20 — 64, (Variance of Subspacel: 2.60, Variance of
Subspace2: 1.98.)

TABLE I
QUANTIZATION DISTORTIONS OF DIFFERENT BIT-ALLOCATING WAYS

Subspace 1 Subspace 2 Whole Space
bits | distortion | bits | distortion centroids distortion
1 429.05 5 2331 | 64 (2T x2%) | 452.36
2 90.80 4 52.23 64 (22 x 24) 143.03
3 59.51 3 113.22 | 64 (23 x 23) 172.73
4 37.63 2 200.70 | 64 (2% x 2%) 238.33
5 13.57 1 393.59 | 64 (2° x 21) | 407.16

The encoding and querying procedures of OPQ are the same
with those of PQ. A closely related work to OPQ is the Carte-
sian k-means algorithm developed by Norouzi and Fleet [36]
in 2013.

C. Motivation: Analysis of Data Distribution

In the previous formulation of PQ, it is often assumed
that each subspace should have a comparable “energy” on
the average. When this assumption is invalid, the mismatch
between data distribution and bit budget of each subspace
becomes a significant issue. One way of addressing this
issue is to pursue a more appropriate data representation
(i.e., via matrix transforms); alternatively, one can analyze
the varying characteristics of data distribution from subspace
to subspace and strategically allocate the bit budget. In this
paper, we advocate this alternative approach and propose to
dynamically sense the data distribution for the purpose of
bit rearrangement/reallocation. To facilitate our discussion of
motivation, we consider a toy example as shown in Fig. 2.
In this example, data points in subspace 1 form four distinct
clusters and those in subspace 2 scatter across the entire space.
The first quantization method follows the original PQ and

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 28, NO. 12, DECEMBER 2018

Cluster distributed Uniform distributed

Fl
[
2

PR
colnwialenmnale-

al~se=-cualsle
P R 1V P e 0 Y PR PO P

2
2
3
i3
3
5
3
2
1
3

IS PO S VU g P B

clolsiolalslw=lalslale

[ST ETL IV) L 1 O PO
DI ISt PO TS

[}
[}
[
[

1
33
4z 1 4

histogram

[

1 histogram

& & 4 B 8

Fig. 3. Process of computing the aggregation degree of an arbitrary subspace.
Top: The data space is segmented into some small cells. Here, P = 12x 12 =
244. Middle: Matrix of Np, p =1,2,...,244. Bottom: Histogram of all the
valid Np (Np > 0).

uniformly allocate 3 bits to each subspace (6 bits in total); by
contrast, the second method still uses 6 bits in total but one bit
is donated from subspace 1 to subspace 2 (i.e., nonuniform bit
allocation). Table I shows the comparison among quantization
distortions of different strategies - obviously the nonuniform
“2 bits 4+ 4 bits” method achieves lower distortion than the
uniform “3 bits+3 bits” method. This finding is consistent with
the basic principle underlying data compression - i.e., center-
clustered data (with smaller variance) are more compressible
than uniform-distributed data (with larger variance).

III. DISTRIBUTION SENSITIVE PRODUCT QUANTIZATION
A. Aggregation Degree and Matching Index

We introduce some necessary notations first. For a given
dataset X (X € RNVN*ML) e assume that it is the union
of M subspaces, ie., X = [X1,...,Xp, ..., Xul: X €
RN*L where N denotes the number of samples, L denotes
the dimension of data in the m-th subspace and X,, =
[X1,....X/,....X.]: x; € RN, The total quantization distor-
tion denoted by D is calculated as the sum over distortions of
all subspaces - i.e., D = Dy + ...+ Dy. The total bit budget
denoted by B is the sum of bit budgets for each subspace -
ie, B=bi+...+buy.

To quantify the distribution of data within a subspace,
we formalize the concept of aggregation degree (AD) in low-
dimension first (refer to Fig. 3). Based on the range of data
samples, one can uniformly segment the data space along each
dimension. For 2D toy example as shown in Fig. 3, this creates
an array of quantization cells and then we can calculate the
histogram (number of data points falling within each cell) for
the whole data set. The result of histogram calculation will be
denoted by N,, p =1,2,..., P and only a cell with positive

LI et al.: DSPQ

Np will be called valid (otherwise it is an empty cell). Then
aggregation degree (AD) can be defined by a derivation of the
standard deviation of N, as follows

P
AD =D (N, = N,)*/(N)S, 81 < 1)
p=1
where N_p denotes the mean of the set {N,|p=1,2,..., P}

and Ny is the total number of valid cells. S; is intended for
shrinking the valid region, as there are usually some valid
cells that contain only a few samples can hardly affect the
quantization result of the entire space.

Next, we extend the above definition of AD from
low-dimension to an individual subspace. Considering the
m-th subspace X, = [X1,...,X/,...,X.], we can denote the
histogram calculated for the p-th cell and the /-th dimension
by Np,. Then the aggregation degree for the m-th subspace
X, 1s given by

L P
ADp=Y"O (Npi =Ny)*/(Ny.)H, S1<1, S > 1.

=1 p=I1
(6)

Here, the aggregation degree of each dimension is enlarged
by S>. Hence, the entire aggregation degree is mainly influ-
enced by the center-cluster distributed dimensions.

It is not difficult to see that AD will be large if data are
governed by a peaked Gaussian distribution (e.g., left example
in Fig. 3) and will be small if the data observe a uniform distri-
bution (right example in Fig. 3). In other words, data set with
a large AD in fact would require a small bit budget (matching
our intuition of more compressible) and vice versa. Therefore,
to evaluate the mismatch between data distribution and bit
budget for a given subspace, one can naturally define the
matching index (MI) as follows:

Vin = ADyy, x (b)), (7)

where b, is the bit budget associated with subspace X,,.
S3 penalizes the two parts to be of the same magnitude,
because each dimension of AD,, is enlarged by S,. It fol-
lows that the mismatch between two competing subspaces
X, and X,,, can be characterized by their matching index
difference. Intuitively, the quantization “energy” can be eval-
vated by the quantifying difficulty level and the sufficiency
of the bits. The following lemma summarizes the key result
of using matching index for the purpose of bit reallocation
(its proof can be found in the Appendix).

Lemma 1: Let the matching indexes of two subspaces X
and X, be V and V, (Vi > Va) respectively. Then there must
exist a constant ¢4 (1 < &, < 00) such that donating one bit
from X1 to Xy will result in lower quantization distortion -
i.e., D' < D whenever we have

— > gy ®)

Here, D' denotes the total quantization distortion of X1 and Xa
after the bit-donating is operated, D denotes the distortion
without bit-donating.

3507

An intuitive interpretation of parameter &, is that it serves
as the lower bound of tolerable mismatch between data
distribution and bit budget (conceptually similar to the role
played by comparable energy in original PQ [19]). Further
improvement is possible whenever some mismatch ratio bigger
than ¢, can be found. Note that the parameter ¢, depends
on the specific distribution of the data. In practice, we have
to estimate an appropriate parameter for the datasets of our
interest and carefully select this parameter empirically.

B. Formulation of DSPQ

The above theoretical analysis suggests that it is possible to
improve the match between data distribution and bit budget
through bit rearrangement. Bit arrangement can be done in
several different ways. An ad-hoc brute force solution is
to perform pairwise comparison between V,,, and V,, and
activate donation when Eq. (8) is satisfied; a greedy strategy
would be always pick the maximum and minimum of Vj,
values, apply bit rearrangement until Eq. (8) is not satisfied
any more. Here, we have developed an iterative matching
process for bit rearrangement. First, the set {V;,} is sorted in
descending order and divided into two halves. Then we select
the largest V' value in the first half and denote it by Vi 1; based
on Vi1, all values in the second half satisfying inequality
Eq. (8) are found. The largest of them is denoted by Vi > and
we will donate one bit from Vi ; to Vi 2. Such bit donation
process will be repeated until the condition (8) can not be
satisfied for any pair in set {V;}. A complete description of the
proposed bit rearrangement strategy is given by the following
Algorithm 1.

Assuming that the optimum allocation of bits for the m-th
subspace is by, obviously, we have b} + b3 +---+ b}, = B.
Then the codebook is

CAD = ¢l C . x el ©)

where AD represents the aggregation degree. Then,
the codebook is trained by optimizing the quantization
distortion.

min > lIx = e)l

s.t. e(i(x)) € CAP. (10

Once the codebook (CfD) is trained, a query item y can be
quantized by

O(y) = argmin|ly — c(i(x)|,

c(i(x))

s.t. ¢(i(x)) € CAP,

(1)

1) Time Consumption of Bit-Rearrangement: First, to cal-
culate the matching index consumes O (M LP2). Second,
the time consumption of Algorithm 1 is influenced by the
data, with a maximum of 0(23 M 2). These are all shorter than
the time cost of training the codebook, which is O (28tNL),
where ¢ is the target iteration number of k-means and N is
the quantity of the training data.

3508

Algorithm 1 The Bit-Rearrangement Algorithm
Input: V,,b,,m=1,..., M.
output: b . m=1,..., M.
1: re-rank the ratios V,, in an increasing order get a new set:
vitym=1,...,M;
2: separate {V, } from the median into two subsets:
(VY and (V,"},m=1,...,[M/2],
Vn/jlf > V,;;, for arbitrary m and mo;
3: while not converged do (outer loop) :
1) R=0;
2) while not converged do (inner loop) :
(1) Veqg=max(V,"),m=1,...,[M/2];
(2) find all the Vk/_ subject to:
Vil > €x X V,;_;
(3) Vin=max(V,);
@) it Vo # ¢
Vi,1 and Vi > form the bit-donated pair,
R=R+1;

else inner loop converged;
end if;
end while (inner loop);
3)if R>0
for mi=1,...,R

o find the subspace that corresponds to {V,;,Jl“} and

assume the index of the subspace is t;
eb,=b —1;
my =[M/2] —mi + 1,
e find the subspace that corresponds to {V,/

mn2

} and

assume the index of the subspace is s;
e by =bs+1;
end for;
else outer loop converged,
end if;

end while (outer loop);
4: b =by,m=1,..., M.

2) Assignment Complexity of DSPQ: DSPQ only differs
from PQ in terms of the way memory is allocated to each
subspace. In the PQ framework, the complexity of learn-
ing the quantizer is M times the complexity of performing
k-means with k* centroids of dimension L, ie., Mk*L.
In DSPQ, the time consumption consists of the k-means with
ki (k¥ = 2Pm,m = 1,...,M) centroids of dimension L
in all M subspaces. Then the total complexity is given by
kiL 4 ...,k};L and it is mainly influenced by the largest
k¥ The relationship of the size of the codebook of both

mmax*

PQ (Mk*), DSPQ (ki + ..., k};) and k-means (k*My is

< 2B-M+1 9B _ M
(12)

k=20 < 2bmma — i*

m max

Here, k is the number of centroids when clustering the data
using the k-means directly. As for DSPQ, when k) . is
close to k*, all the other k, are close to k*. Then the time
consumption is also Mk*L, which is the same as that of PQ.
Otherwise, if the k* is larger than k*, all the other & will

m max
be much smaller than & Then the time consumption is

mmax*

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 28, NO. 12, DECEMBER 2018

TABLE II

ASSIGNMENT COMPLEXITY PER SAMPLE AND MEMORY USAGE
OF THE CODEBOOK FOR DIFFERENT QUANTIZERS

Quantizer | assignment complexity memory usage
k-means MEL = Mk*ML | MkL = ME*ML
PQ ME*L ME*L
DSPQ (ky+..., k)L (ki + ..., k)L

TABLE III

STANDARD DEVIATIONS OF AGGREGATION DEGREE VALUES THAT
CORRESPOND TO THE DATA FROM ALL SUBSPACES

data original data | initialized data
MNIST 0.3225 0.1026
SIFTIM 0.7211 0.5411
Bootstrap 1.0326 0.4588

mainly & . L and the time consumption of other subspaces

are all several orders of magnitude smaller. k', ... is still much
smaller than k. Thus, k;, .- L remains much less than the time
consumption of k-means, which is MM, To summarize,
the time consumption of DSPQ is usually a little more than
that of PQ, but it is much less than that of k-means.

3) Memory Usage of DSPQ: To store the codebook, DSPQ
requires the memory for kj + ..., kj, centroids. If the values
in the centroids are all floating-point values, the total cost is
(ki + ..., k3,)L floating-point values because each centroid
contains L elements. The memory usage of PQ and k-means
is Mk*L and Mk*M L. Then, the memory usage of DSPQ is
also a little more than that of PQ and is much less than that of
k-means. The assignment complexity and memory usage of the
codebook for different quantizers are summarized in Table II.

C. Distribution Sensitive Optimized Product
Quantization (DS-OPQ)

Thanks to an improved optimization of quantization distor-
tion, OPQ 1is considered to be the most effective derivative
framework of PQ. However, OPQ is also a time-consuming
algorithm when it is used to train a discriminative code-
book. To alleviate computational burden, the authors of
OPQ [24], [38] also constructed a pre-processing step based
on Principal Components Analysis (PCA) for parameter ini-
tialization. Here, we want to study the impact of parameter
initialization in OPQ on aggregation degree for the purpose
of optimizing DSPQ. The aggregation degree values of all
subspaces are collected and their standard deviations are
provided in Table III. A smaller standard deviation indicates
that the aggregation degree values are closer to each other
after the initialization. It can be observed from Table III that
the pre-processing step also helps strike an improved balance
between aggregation degree and bit budget.

It is possible to further improve OPQ by employing
the dynamic bit rearrangement strategy adopted by DSPQ.
Without destroying the natural structure and distribution
of data, we can adjust the allocation of bits dynamically

LI et al.: DSPQ

X
Sample: X1, X12 oo, Xup| [X21, X22 <., x;;l
l = Memory
——]
Centroids: 4] = bl. i
I
G Code

Representative ey s— o 0,1,1,0,0,1,0,1
pa 1, 0,
centroids:

Fig. 4. The encoding process of DSPQ.

after initialization. The codebook of DS-OPQ is trained by

[min, Z Ix = cG)l

s.t. ¢(i(x)) € C = {e(i(x)) |Re(i(x)) € CAP}. (13)

The optimized codebook and rotation matrix are denoted by
CfD and R, respectively. Here the optimizing strategies of
OPQ and DS-OPQ are the same. Thus, the performance is
only decided by the quantization precision or equivalently
the codebook size. As shown in the experimental section,
starting from an improved initialization, DS-OPQ converges
much faster than OPQ.

The querying process entails solving the following problem

argmin [|[R.x — ¢(i (x))|l
c(i(x))

s.t. e(i(x)) € C = {c(i(x)) |R4c(i(x)) € CAP}. (14)

D. ANN With DSPQ and DS-OPQ

ANN reduces to the task of squared distance computation
once the samples are all encoded. As is shown in Fig. 4,
encoding in both DSPQ and DS-OPQ means to represent a
sample by M centroids whose lengths are all L. Then the
entire code length is ML, which is the same as that in PQ
and OPQ. Hence, the SDC and ADC proposed in [19] can be
utilized to calculate the distance in DSPQ and DS-OPQ.

Besides, we can find that, although the encoding strategies
of DSPQ and PQ are different, their resulting codes are of
the same shapes and can be utilized in the same way. Thus,
DSPQ can also be combined with an inverted files system [4].
In the system proposed in [19], we can achieve this by simply
replacing the codes of PQ by the codes of DSPQ. Furthermore,
the codes can be further encoded into effective binary code by
the algorithm proposed in [42].

IV. EXPERIMENTAL EVALUATION

In this section, we describe the parameter estimation, com-
pare our algorithms to previous techniques, and further analyze
our algorithms. The cell number P is set to 50, the parameters
S1 and S, in calculating the aggregation degree value are set
to 0.5 and 1.3, respectively. S3 is set to 1.25.

First, we introduce the datasets we included and the
measurements. The public datasets include SIFTIM [19],
MNIST [24], LFW [43], and Bootstrap [44]. Besides, a sur-
veillance video from a public resource is also included and
used to form a quantization task. SIFTIm and MNIST are

3509
TABLE IV
DETAILS OF THE INCLUDED DATASETS
dataset | dimension | train set | base set | query set
SIFT1M 128 100k IM 10k
MNIST 28x 28 20k 60k 10k
LFW 64x 64 316 1k 200
Bootstrap | 120x 160 1.5k 2.5k 500
Surveil 44x 44 700 2.2k 300
TABLE V

BiT BUDGET OF DSPQ ON SIFT1M AND MNIST DATASETS

task—SIFTIM bits allocation

M=2 [8, 8]

M =4 [6, 10, 10, 6]

M =38 [6, 7,9, 10, 9, 10, 6, 7]

M =16 [5,8,8,5,8, 11, 11, 10, 8, 11, 10, 8, 5, 7, 8, 5]
task—MNIST bits allocation

M=2 [7, 9]

M =4 [4, 12, 11, 5]

M =38 2, 6,12, 12, 11, 11, 7, 3]

M =16 [2, 3,5, 10, 11, 11, 12, 11, 10, 10, 10, 11, 10, 5, 4, 3]

two widely used datasets to test the PQ-based algorithms for
ANN search [24], [25], [37]-[39]. Here, SIFT1M is composed
of SIFT descriptors and MNIST consists of 70k handwritten
digital images. LFW consists of about 1.2k colorful faces
and Bootstrap contains a short video that is composed of
approximately 3k frames. The actual surveillance video, which
was recorded by “Surveil” is composed of 2.2k frames. Details
of these datasets are given in Table IV. The samples in the
training set are selected randomly from the base set.

Besides, three widely used criteria are included: mean
Average Precision (mAP), Recall@R and Recall. mAP exam-
ines whether the algorithms can find the approximate nearest
neighbors and rank them in the correct order; Recall@R is
defined by the proportion of query vectors for which the
nearest neighbor is ranked in the first R positions; Recall is the
proportion of query vectors for which the K true Euclidean
nearest neighbors are found in the first N positions. Generally,
as for Recall and mAP, only the ranks of the K = 100
Euclidean nearest neighbors are considered.

To be more intuitively and clearly, in this paper, Recall@R
and Recall are denoted by Recall(l) and Recall(100),
respectively. Because Recall@R measures an algorithm with
the performance of exploring the nearest neighbor, whereas
Recall emphasizes the ability of finding the approximate
nearest neighbors (K = 100). In other words, Recall@R is
a specific case of Recall (K = 1).

Finally, as is suggested in [38], OPQ is only initialized by
the parametric solution and its maximum number of iterative
cycles is set as 100. In Table V, bit budget of DSPQ on
SIFTIM and MNIST datasets are given. Initially, 8 bits
(or 256 centroids) are assigned to each subspace.

A. Parameter Estimation

e« 1s a key threshold to determine whether the ratio of the
matching indexes ¢ (¢ = Vi /V») is obvious. Here we estimate

3510

0543 0.722

0.721

mAP

- - -average allocated
\ - - -average allocated
= bit-donated = bit-donated
054 0718

115 12 125 13 135 14 11 115 12 125 13 135 14
€ €

(@) (b)

o7s3}| ~ — —average allocated
= bit-donated

0.719

mAP
2

(c) (@

Fig. 5. Comparisons of the performances when ¢ changes. (a) SIFTIM.
(b) MNIST. (c¢) Surveil. (d) Bootstrap.

the performance of the quantizers while steadily altering the
value of ¢. For each given value of ¢, in the bit-rearranging
operation, only two subspaces are included and all the others
remain in the initial state. Then, one bit is donated from
one subspace to another. The corresponding ratio ¢ and the
quantization results are collected and are shown in Fig. 5.
We also include the results obtained without any bit-donated
operation for facilitate comparison. Actually, the crossing point
of the two curves is the default value at which the two methods
return the same quantization precision.

The figures show that the quantization results of the dynam-
ically adjusted bit-allocating method is positively correlated to
the parameter €. A large ¢ indicates obvious difference in the
aggregation degrees of the two subspaces. Thus, the dynamic
bit-arrangement method definitely improves the quantization
results. Otherwise, dynamic bit arrangement would be of no
use if the aggregation degrees are at the same level.

The optimal threshold ¢, relies on the specific data distribu-
tion. In Fig. 5, the intersection point of the two curves in each
sub-figure varies in the range 1.17 to 1.22. Eventually, we con-
sider ¢ = 1.24 as a cautious choice if no prior information
is available. A slack threshold means that bit rearrangement
only occurs when the differences in the aggregation degrees
are sufficiently obvious. Otherwise, the results of DSPQ are
the same as those of PQ.

B. Evaluations of DSPQ

First, we show how the bit allocation influences the quanti-
zation performance. First, the data space is decomposed into
two subspaces. Then we steadily change the bit allocation
for each subspace and record the corresponding quantization
distortion. Eventually, the distortion of the entire space is
obtained accordingly. The curves are shown in Fig. 6.

In the figure, once the memory is donated from one
subspace to another, the quantization distortion increases.
Meanwhile, the distortion of the other subspace decreases.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 28, NO. 12, DECEMBER 2018

4 5
5 v
10 .
c 4 c e
i) Subspace 1 k] .
b= b= -
S = Subspace 2 S e
17} — 0 -
a Wholespace| | a L
3 7 .
- 6 Pid
- g
- -
- -
- P
-~ r Subspace 1
2t -~ - —Subspace 2
- — Wholespace

2
511 610 79 88 97 106 115
Bit Allocation

511 6,10 79 88 97 106 115
Bit Allocation

(a) (b)

Fig. 6. Tradeoff between the number of bits and the quantization performance
per subspace for different datasets when M = 2. (a) SIFTIM. (b) MNIST.

TABLE VI

TIME CONSUMPTION OF THE TRAINING PROCESS IN
BOTH DSPQ AND PQ (THE UNIT IS SECOND)

| M [DSPQ | PQ | DSPQ-pre |
4 | 147.10 | 146.89 0.30
SIFTIM| 8 | 209.80 | 199.32 0.33
16 | 378.24 | 333.14 0.32
4 | 6533 | 38.86 0.26
MNIST | 8 | 73.35 | 38.00 0.27
16 | 74.07 | 38.23 0.24
4 0.18 0.13 0.018
Bootstrap 8 0.30 0.18 0.019
16 | 0.53 0.37 0.019
4 0.16 0.15 0.036
Surveil | 8 0.20 0.19 0.037
16 | 0.30 0.26 0.037

Then the distortion of the entire space keeps on changing with
the adjustment of the bit allocation. For different datasets,
the optimized bit allocation way is determined by the data
distribution. We can see from the figure that, the 7, 9-way is
the best choice for the MNIST dataset, whereas the average bit
allocation method is optimal for the SIFT1M dataset. When
M increases, the data are segmented into additional smaller
pieces. Then the distributions of the different subspaces are
more flexible and the results obtained with the optimal bit
allocation method differs greatly from those obtained using
the average method.

Then we provide the time consumption of the pre-
processing and processing operations required to train a prod-
uct quantizer. The two sets of results are provided in Table VI
together with the time consumed by training the product
quantizer. Besides, the time consumption of the query phases
are given in Table VII. We can see from the tables that
both the training and the querying time costs of DSPQ are
usually higher than those of PQ because DSPQ produces
more centroids. In most cases, k]k + ..., k?\} is a little larger
than Mk*. Thus the time consumption of the query phase in
DSPQ is almost the same as that in PQ. In the training process,

LI et al.: DSPQ

—*-DS-0PQ

—#-DS-0PQ

3511

—#-DS-0PQ

ro
v
—#—DS-0PQ

Fig. 7.

(a)

Quantization results of all the algorithms in terms of the mAP measurement.

(©)

(d

(a) SIFTIM. (b) MNIST. (c) Bootstrap. (d) Surveil.

the iteration of the k-means in Matlab 2016 stops when the
distortion is low enough instead of stopping after ¢ iterations.
Thus, the eventual training time of PQ is a little more than
that of PQ. Besides, the pre-processing cost of DSPQ is so
low that it can be ignored in the training process.

C. Comparisons of the Algorithms

We compare the performance of our algorithms with that
of previous algorithms. Here, the PQ algorithm refers to the
original version proposed in [19], instead of the derivative
algorithms (PQ-RR and PQ-RO) in [38], because we find the
original PQ to perform much more effectively than the two
derivatives. The results obtained for PQ-RR and PQ-RO are
also included.

The results, in terms of the mAP measurement, which
estimates both the number of returned neighbors and their
ranks, are shown together in Fig. 7. The task M = 2 is missing
on some datasets. This is the case when the differences among
the subspaces are smaller than the threshold, in which case no
bit rearrangement is required. The results, in terms of the mAP
measurement which estimates both the quantity of the returned
neighbours and their ranks, are shown together in Fig. 7.

Our proposed algorithms perform more effectively than the
previous ones on all the datasets, i.e., DSPQ is superior to

TABLE VII 1 !
ASSIGNMENT TIME CONSUMPTION OF THE QUERY SAMPLES
IN BOTH DSPQ AND PQ (THE UNIT IS SECOND) 0.8
[M [Sample | DSPQ | PQ | ~os 1
4 7601.29 7423.41 % L% # i e
SIFTIM 8 | 10k 14499.34 | 13343.16 & 04 2% B e
16 30311.63 | 28091.90 Eo‘ée
n 48726 | 48721 o mae
MNIST | 8 10k 889.99 875.67 0 ‘ ‘ e
16 1655.26 1583.46 ! 2 ° Lﬁ’ 2 % 100
4 1.89 1.85 (a)
Bootstrap 8 500 3.06 2.46
16 5.33 4.85 !
4 1.32 0.99
Surveil | 8 300 1.76 1.63 081
16 2.89 2.77 5 a-zcEEF
N =
e ®FT e

——DSPQ: 128bits |,
—#%— OPQ: 32 bits
=0~ OPQ: 64 bits

=1 ——OPQ: 128 bits
—#— DS-OPQ: 32 bits
—O— DS-OPQ: 64 bits
—— DS-OPQ: 128 bits

300

Fig. 8. Quantization results of all the algorithms on SIFTIM dataset with
M =4 (32 bits), 8 (64 bits), 16 (128 bits). (a) Recall(1). (b) Recall(100).

PQ and DS-OPQ outperforms OPQ, in most cases. PQ-RR and
PQ-RO performed the least effectively. Thus, the approach of
achieving comparable energy by multiplying the data with a
random orthogonal matrix is not a good choice. Although this
can balance the differences between the aggregation degree of
the data and the bit budget of each subspace, it destroys the
structure of the data. After the projection, selected elements
that are similar or even almost the same are projected into
different subspaces and are recorded by different codes. Thus,
the performance of the quantizers is poor. On the contrary,
the optimized approach (OPQ) results in a more effective
performance because it optimizes the projection matrix and
finds the best way to achieve comparable energy for each
subspace. DSPQ presents another way in which to balance
the differences between the aggregation degree of the data and

3512

0.8

- g # —#— PQ: 32 bits

= 06 Y e /:," e —0— PQ: 64 bits |
® ? v 4 » —— PQ: 128 bits

8 ’ ,'(l s —%— DSPQ: 32 bits

2 . —0— DSPQ: 64 bits

——DSPQ: 128 bits
—%— OPQ: 32 bits
—O— OPQ: 64 bits 1
—— OPQ: 128 bits
—#— DS-OPQ: 32 bits
—O— DS-OPQ: 64 bits
—— DS-OPQ: 128 bits

10 20 50 100
N
(a)
508 2
S ,% L7 P2 =~ |=%=PaQ: 32 bits
z 7% . o x,/’ —0— PQ: 64 bits
= I s ',:';5' o ——PQ: 128 bis
8 PR Rt —#— DSPQ: 32 bits
K 07r L5 g =0~ DSPQ: 64 bits 1
I AT ——DSPQ: 128 bits
R 2 —#%— OPQ: 32 bits
Los =0~ OPQ: 64 bits
0.6 l:' ol —— OPQ: 128 bits }
g —#— DS-OPQ: 32 bits
Pl —0— DS-OPQ: 64 bits
* —— DS-OPQ: 128 bits
0.5 -
100 200 300
N

Fig. 9. Quantization results of all the algorithms on MNIST dataset with
M =4 (32 bits), 8 (64 bits), 16 (128 bits). (a) Recall(1). (b) Recall(100).

1

0.8
<08 i‘/ /@ [—w—PQ: 16 bits
= [lr#” | —0-pa:32bis
® % % —— PQ: 64 bits
5 ¢ o —%— DSPQ: 16 bits
o 041 P ¢ e —0— DSPQ: 32 bits
!’ z v —— DSPQ: 64 bits
/‘1/ —#— OPQ: 16 bits
o =0~ OPQ: 32 bits
02t s —— 0PQ: 64 bits
‘gf‘ —#— DS-OPQ: 16 bits
!'"“ —O— DS-OPQ: 32 bits
—— DS-OPQ: 64 bits
0
1 2 5 10 20 50 100
N
(@
0.4
—#— PQ: 32 bits
~0— PQ: 64 bits
——PQ: 128 bits
—#— DSPQ: 32 bits
—O— DSPQ: 64 bits
—— DSPQ: 128 bits
—#— OPQ: 32 bits
S 0.3 | |~ 0PQ: 64bits
=] —— 0PQ: 128 bits
oy —#— DS-OPQ: 32 bits
_8 —O— DS-OPQ: 64 bits
5] —— DS-OPQ: 128 bits _
@« 2
R cae
-7
22>

400 500

(®)

Fig. 10. Quantization results of all the algorithms on Bootstrap dataset with
M =4 (32 bits), 8 (64 bits), 16 (128 bits). (a) Recall(1). (b) Recall(100).

the bit budget of each subspace. The improvement of DSPQ
compared to PQ is obvious. However, without the optimizing
process, DSPQ performs less optimal than OPQ, although

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 28, NO. 12, DECEMBER 2018

0.8

| P szbis
z W % |0~ PQ: 64 bits
~——— PQ: 128 bits

Recall(1)
=)
o

—#— DSPQ: 32 bits
® —O— DSPQ: 64 bits
4 e —— DSPQ: 128 bits
% —#— OPQ: 32 bits
—O— 0PQ: 64 bits 1
—— OPQ: 128 bits
o~ —#— DS-OPQ: 32 bits
L ~O— DS-OPQ: 64 bits
2 —— DS-OPQ: 128 bits
0.2 \ s ‘ ‘ ‘
1 2 5 10 20 50 100

09r

—#— PQ: 32 bits
~0O— PQ: 64 bits
R —— PQ: 128 bits
;;/ —#— DSPQ: 32 bits.
7 —O— DSPQ: 64 bits
—— DSPQ: 128 bits
e —#— OPQ: 32 bits

f —0— 0PQ: 64 bits
06} ——oPQ: 128bits | 1
/ —#— DS-OPQ: 32 bits
” —O— DS-0PQ: 64 bils

= DS-OPQ: 128 bits

0.5 :
100 200 300

(b)

Fig. 11. Quantization results of all the algorithms on Sureil dataset with
M =4 (32 bits), 8 (64 bits), 16 (128 bits). (a) Recall(1). (b) Recall(100).

its time consumption is much less than OPQ. Ultimately,
DS-OPQ always achieves the best performance. Compared
with DSPQ, DS-OPQ is the optimized version and converges
to the optimum. Compared with OPQ, DS-OPQ is more
accurate because more centroids are utilized. As shown in
the next section, DS-OPQ also converges faster than OPQ,
because it starts from the natural structure of the data.

The advantages of the respective strategies vary on different
datasets. On both SIFTIM and Bootstrap, only DS-OPQ
performs much more accurately than PQ whereas OPQ and
DSPQ perform at the same level as PQ. This is the case in
which the use of additional centroids and further optimization
are effectively combined. On the MNIST dataset, both the
bit rearrangement and optimization are sufficiently effective,
whereas the combination of these two strategies has limited
benefit because the optima of the two cases are close to each
other. On the Surveil dataset, the optimizing strategy plays a
key role in improving the quantization results, whereas the bit
rearrangement method results in limited improvements to both
PQ and OPQ.

In summary, both the bit rearrangement and optimization
strategy improve the quantization task on these datasets. The
combination of the two strategies results in the most effective
quantizer.

A further comparison of PQ, OPQ, DSPQ, and DS-OPQ
was carried out and we provide the performance in terms of
the measurements Recall(1) and Recall(100). The results of
each dataset with M = 4,8, 16 are presented together in the
same figure. All the results are shown in Fig. 8 to Fig. 11.

LI et al.: DSPQ

3513

0.7

- -PQ
——DSPQ
—¥-0PQ

= = OPQ-best
—#—DS-OPQ

0.2

Recall(100)

= = OPQ-best
—8—Ds-0PQ

8 16 1 2 5
M

(a)

Fig. 12.

In terms of Recall(1) and Recall(100), the results are
consistent with those of mAP. Besides, the improvements vary
as the number of subspaces (M) changes. The use of less
memory enhances the improvements achieved with both the
bit rearrangement and the optimization strategies. Otherwise,
when the available memory allocated to all the subspaces is
sufficient, no improvement strategy is necessary because the
results of PQ are already optimal and the quantization error
is close to zero. Alternatively, when the available memory is
insufficient, solving the mismatch between the distribution of
the data and the bit budget of each subspace is significant.

Furthermore, we also include the LFW dataset to show
a case where the optimized approach is no longer effective
in solving the quantization task. This is a task for which
the samples are really high dimensional and similar to each
other; however, the number of samples is smaller than their
dimensions. This situation occurs in some practical recognition
problems.

In the process of optimization, each dimension of the data
is allocated a parameter. Then the training set should be
sufficiently large such that the number of training samples
is larger than the number of non-zero eigenvalues. Otherwise,
a uniquely optimal solution would not exist and almost none
of the solutions would lead to an improvement in PQ. As is
shown in Fig. 12, the performance of OPQ is the least
accurate in quantizing LFW data. Besides, we tried some
other initializations for OPQ and found that starting from the
natural structure of the data results in the best quantization
performance, as shown by the black dotted line in the figure.

DSPQ achieves the best performance because it obeys the
natural structure of the data, in which case the distributions of
the adjacent dimensions are similar. Arranging them into the
same subspace improves the quantization task. Thus, the bit
rearrangement strategy continues to be effective even if the
optimizing strategy is unsuccessful. Meanwhile, we find that
DS-OPQ also performs poorly because the projection of the
data does not lead to an improvement.

Besides, considering all the results, it is clear that DSPQ
never adversely affects PQ. Because, once the bit rearrange-
ment operation is no longer required, DSPQ uses averaging to
allocate all the bits to subspaces such as PQ. Thus, the worst
expectation of the performance of DSPQ is the same as that
of PQ.

(b)

Quantization results of all the algorithms on LFW dataset. (a) mAP vs. M. (b) Recall(1) (M = 8). (c) Recall(100) (M = 8).

5 4
‘x10 15 x10
' --oPQ AR
8% -v-Ds-0PQ 14 TTTmmmm------o
c N c
S7 S S
5 N 13
S6 ~— 3
5 | TTreeeall__. 5§12
w5 s
8 N
2 R
S 4 <
S S
< s - - 0PQ
3N 1 -+-DS-0PQ
Vv v—¥ \
2 0.9

o

40
iteration number

(a)

50
iteration number

(W)

100

Fig. 13. The converge speed of OPQ and DS-OPQ. (a) MNIST. (b) SIFT1M.

Based on the above results, we conclude that both
the proposed sensitive data distribution bit rearrangement
method (DSPQ) and the optimized method (OPQ) are effective
in solving most practical quantization tasks. Their combina-
tion (DS-OPQ) results in the most effective quantizer if only
the optimizing strategy can find the global optimum.

D. Efficiency Estimation

We conducted a further comparison of the efficiencies of the
two optimizing quantization algorithms by also demonstrating
their converge speeds in this section. Although OPQ and
DS-OPQ obey the same optimizing strategy, they differ from
each other in terms of the starting point.

Here, as is generally accepted [19], [38], the quantization
distortion is used to represent the accuracy of the quantiza-
tion task. Although the quantization distortions of the two
algorithms (OPQ and DS-OPQ) converge to different optima
because the number of centroids differ, we are still able to
judge the convergence speed of the two algorithms from the
tendencies of the curves.

As is shown in Fig. 13, the objective functions of OPQ
continue decreasing steadily for the duration of the 100 itera-
tive cycles. On the MNIST dataset, the objective function of
OPQ decreases sharply during the first 20 iterative cycles and
its curve becomes increasingly flat in subsequent iterations.
On the SIFTIM dataset, the curve of OPQ decreases slowly
all the time. In summary, the curves indicate that, on both
of the two datasets, OPQ converges all the time during the
given iterations and the optimizing process continues even
after 100 iterative cycles.

3514

In comparison, the curves of DS-OPQ stabilize after only
a few dozen cycles and the corresponding objective function
remains consistent in the subsequent iterative cycles. This
indicates that DS-OPQ has already converged to the optimum.
Equivalently, the dynamic bit arrangement operation facili-
tates the original product quantization task considerably and
DS-OPQ converges much faster than OPQ. Furthermore, as is
shown in Section IV-C, the performance of DS-OPQ is also
more effective than those of OPQ on these two datasets.

V. CONCLUSION AND FUTURE WORK

The research presented in this paper concerns the mismatch
between the aggregation degree of the data and the bit bud-
get of each subspace. Hence, we proposed a dynamic bit
rearrangement method to improve the encoding process of
the product quantization framework. Our algorithms showed
advantages in the form of sensing the distribution of the data,
analyzing their degree of aggregation, and rearranging the
bit allocation for each subspace, compared to existing algo-
rithms that allocate the bits averagely. The bit rearrangement
approach can be integrated with the optimizing strategy pro-
posed in Optimized Product Quantization (OPQ) to produce
DS-OPQ. In addition to performing more effectively than
OPQ, DS-OPQ converges much faster.

Thus, to solve the mismatch between the data distribution
and the bit budget of each subspace, optimization of the
data distribution and bit rearrangement based on the data
distribution were both shown to be effective. Combination of
the two strategies resulted in the most effective way to solve
the problem.

In this work, we follow the assumption in OPQ that
the optimal solution for data projection is a linear function
of the dimensions. However, this may fail to solve some
practical problems. Thus, nonlinear projection of the data
would be expected to result in more accurate quantization
performance. In future, we plan to utilize a kernel function,
nonlinear embedding, and deep learning to model optimal data
projection.

APPENDIX

In this Appendix, we provide a formal proof of Lemma 1.
Proof: We define a function to measure the change in the
distortions.

F=D —D. (15)

Then, we define ¢ as ¢ = V/V,, the lemma can be reformu-
lated as, “we have F < 0, once ¢ > &,”.

First, FF is a monotonic function about &, where & is
calculated by ¢ = Vi /V,. Once the value of ¢ increases from
£1 to & (e3 > €1), the differences of V| and V, will be more
obvious. Without loss of generality, we assume that X, in
the two cases (g1 , ¢2) are the same. Then, Vi, > V.
Accordingly, the quantization task of X ., is easier than that
of X ¢, or the allocated bits of X ., is more than that of X ¢,.
Then, the representative abilities of the bits in X ,, is more
redundant than that in X ;. Losing one bit will bring less
influence to the quantization performance of X ., than to that

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 28, NO. 12, DECEMBER 2018

of X ¢, . Hence, the increment of the distortion of X ,, is less
obvious than that of Xj ;:

/ /
— D1, <Dy, — Dig.

Lea

(16)

However, in the two cases (¢; and ¢7), the decrement of the
distortion of X, keeps the same. Eventually, we have

D;2 —D,, < Dgl — Dy, (17)

or equivalently, Fy, < Fg,. Thus, F is a decreasing function
about &.

Second, when ¢ approaches oo, we have F < 0. This
is the case when Vi is sufficiently large. Then the data
in the first subspace are around one point and the distor-
tion (Djp,o) Wwill not change much even after one bit is
donated to another subspace, i.e., Di,oo = D 0. However,
the distortion of X, (D7 «0) definitely decreases after receiving
one bit, i.e., Dé’ o < D2,co. Lastly, the overall distortion
decreases (D, < Do) and F < 0. Vice versa, when ¢
approaches 0, F > 0.

Eventually, based on the Intermediate Value Theorem [41],
we conclude that there must exist a constant ¢, such that, for
an arbitrary constant ¢, we have F < 0 whenever we have
& > ¢4. This is the same as the statement in the lemma. [

REFERENCES

[1] O. Boiman, E. Shechtman, and M. Irani, “In defense of nearest-neighbor
based image classification,” in Proc. IEEE Conf. CVPR, Jun. 2008,
pp. 1-8.

[2] B. Han, X. Zhao, D. Tao, X. Li, Z. Hu, and H. Hu, “Dayside aurora clas-
sification via BIFs-based sparse representation using manifold learning,”
Int. J. Comput. Math., vol. 91, no. 11, pp. 2415-2426, 2014.

[3] J. Chao, R. Huitl, K. Steinbach, and D. Schroeder, “A novel rate control
framework for SIFT/SURF feature preservation in H.264/AVC video
compression,” IEEE Trans. Circuits Syst. Video Technol., vol. 25, no. 6,
pp. 958-972, Nov. 2015.

[4] J. Sivic and A. Zisserman, “Video Google: A text retrieval approach
to object matching in videos,” in Proc. 9th IEEE ICCV, Oct. 2003,
pp. 1470-1477.

[5] X. Wu and K. Kashino, “Second-order configuration of local features for
geometrically stable image matching and retrieval,” IEEE Trans. Circuits
Syst. Video Technol., vol. 25, no. 8, pp. 1395-1408, Aug. 2015.

[6] A. Torralba, R. Fergus, and W. T. Freeman, “80 million tiny images:
A large data set for nonparametric object and scene recognition,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 30, no. 11, pp. 1958-1970,
Nov. 2008.

[71 W. Zhou, M. Yang, X. Wang, H. Li, Y. Lin, and Q. Tian, “Scalable fea-
ture matching by dual cascaded scalar quantization for image retrieval,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 1, pp. 159-171,
Jan. 2016.

[8] J. Wang, J. Wang, N. Yu, and S. Li, “Order preserving hashing for
approximate nearest neighbor search,” in Proc. ACM Conf. Multimedia,
New York, NY, USA, Oct. 2013, pp. 133-142.

[9]1 D. Zhang, G. Yang, Z. Lin, D. Cai, and X. He, “A unified approxi-

mate nearest neighbor search scheme by combining data structure and

hashing,” in Proc. AAAI Nat. Conf. Artif. Intell., Bellevue, WA, USA,

Jul. 2013, pp. 681-687.

P. Indyk and R. Motwani, “Approximate nearest neighbors: Towards

removing the curse of dimensionality,” in Proc. ACM Symp. Theory

Comput. (STOC), New York, NY, USA, 1998, pp. 604-613.

Y. Weiss, A. Torralba, and R. Fergus, “Spectral hashing,” in Proc.

Adv. Neural Inf. Process. Syst., Whistler, BC, Canada, Dec. 2009,

pp. 1753-1760.

[12] M. Kan, D. Xu, S. Shan, and X. Chen, “Semisupervised hashing via

kernel hyperplane learning for scalable image search,” IEEE Trans.

Circuits Syst. Video Technol., vol. 24, no. 4, pp. 704-713, Apr. 2014.

B. Kulis and T. Darrell, “Learning to hash with binary reconstructive

embeddings,” in Proc. Adv. Neural Inf. Process. Syst., Whistler, BC,

Canada, Dec. 2009, pp. 1042-1050.

[10]

(1]

[13]

LI et al.: DSPQ

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

M. Norouzi and D. M. Blei, “Minimal loss hashing for compact binary
codes,” in Proc. Int. Conf. Mach. Learn., Bellevue, WA, USA, Jun. 2011,
pp- 353-360.

W. Liu, J. Wang, R. Ji, Y.-G. Jiang, and S.-F. Chang, “Supervised hash-
ing with kernels,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Providence, RI, USA, Jun. 2012, pp. 2074-2081.

Y. Weiss, R. Fergus, and A. Torralba, “Multidimensional spectral
hashing,” in Proc. Eur. Conf. Comput. Vis., Florence, Italy, Oct. 2012,
pp. 340-353.

R. M. Gray and D. L. Neuhoff, “Quantization,” IEEE Trans. Inf. Theory,
vol. 44, no. 6, pp. 2325-2383, Oct. 1998.

G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand, “Overview of the
high efficiency video coding (HEVC) standard,” IEEE Trans. Circuits
Syst. Video Technol., vol. 22, no. 12, pp. 1649-1668, Dec. 2012.

H. Jegou, M. Douze, and C. Schmid, “Product quantization for nearest
neighbor search,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 1,
pp. 117-128, Jan. 2011.

R. Ji et al., “Location discriminative vocabulary coding for mobile
landmark search,” Int. J. Comput. Vis., vol. 96, no. 3, pp. 290-314,
Feb. 2012.

A. Babenko and V. Lempitsky, “The inverted multi-index,” in Proc. [EEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2012, pp. 3069-3076.
J. Brandt, “Transform coding for fast approximate nearest neighbor
search in high dimensions,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., San Francisco, CA, USA, Jun. 2010, pp. 1815-1822.

Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin, “Iterative quanti-
zation: A procrustean approach to learning binary codes for large-scale
image retrieval,” IEEE Trans. Pattern Anal. Mach. Intell, vol. 35, no. 12,
pp- 2916-2929, Dec. 2013.

T. Ge, K. He, Q. Ke, and J. Sun, “Optimized product quantization for
approximate nearest neighbor search,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Portland, Oregon, USA, Jun. 2013, pp. 2946-2953.
J.-P. Heo, Z. Lin, and S.-E. Yoon, “Distance encoded product quantiza-
tion,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Columbus,
OH, USA, Jun. 2014, pp. 2139-2146.

H. Hu, “Enhanced Gabor feature based classification using a regularized
locally tensor discriminant model for multiview gait recognition,” IEEE
Trans. Circuits Syst. Video Technol., vol. 23, no. 7, pp. 1274-1286,
Jul. 2013.

H. Cheng, Z. Liu, L. Hou, and J. Yang, “Sparsity-induced similarity
measure and its applications,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 26, no. 4, pp. 613-626, Apr. 2016.

Z. Wang, J. Feng, S. Yan, and H. Xi, “Linear distance coding for image
classification,” IEEE Trans. Image Process., vol. 22, no. 2, pp. 537-548,
Feb. 2013.

X. Sun, C. Wang, C. Xu, and L. Zhang, “Indexing billions of images
for sketch-based retrieval,” in Proc. ACM Conf. Multimedia, New York,
NY, USA, Oct. 2013, pp. 233-242.

M. Rusifiol, D. Aldavert, R. Toledo, and J. Lladés, “Efficient
segmentation-free keyword spotting in historical document collections,”
Pattern Recognit., vol. 48, no. 2, pp. 545-555, Feb. 2015.

Y.-G. Jiang, Y. Jiang, and J. Wang, “VCDB: A large-scale database
for partial copy detection in videos,” in Proc. Eur. Conf. Comput. Vis.,
Zurich, Switzerland, Sep. 2014, pp. 357-371.

R. Ji, H. Yao, W. Liu, X. Sun, and Q. Tian, “Task-dependent visual-
codebook compression,” IEEE Trans. Image Process., vol. 21, no. 4,
pp. 2282-2293, Apr. 2012.

Y. Cho, D.-K. Kwon, J. Liu, and C.-C. J. Kuo, “Dependent R/D modeling
techniques and joint T-Q layer bit allocation for H.264/SVC,” IEEE
Trans. Circuits Syst. Video Technol., vol. 23, no. 6, pp. 1003-1015,
Feb. 2013.

J. Revaud, M. Douze, C. Schmid, and H. Jégou, “Event retrieval in
large video collections with circulant temporal encoding,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Portland, OR, USA, Jun. 2013,
pp. 2459-2466.

N. Inoue and K. Shinoda, “Neighbor-to-neighbor search for fast coding
of feature vectors,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Dec. 2013, pp. 1233-1240.

M. Norouzi and D. J. Fleet, “Cartesian k-means,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Portland, OR, USA, Jun. 2013,
pp- 3017-3024.

Y. Kalantidis and Y. Avrithis, “Locally optimized product quantization
for approximate nearest neighbor search,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Columbus, OH, USA Jun. 2014, pp. 2329-2336.
T. Ge, K. He, Q. Ke, and J. Sun, “Optimized product quantization,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 36, no. 4, pp. 744-755,
Dec. 2014.

3515

[39] T.Zhang, C. Du, and J. Wang, “Composite quantization for approximate
nearest neighbor search,” in Proc. IEEE Int. Conf. Mach. Learn., Peking,
China, Jun. 2014, pp. 838-846.

[40] X. Liu, B. Du, C. Deng, M. Liu, and B. Lang, “Structure sensitive
hashing with adaptive product quantization,” [EEE Trans. Cybern.,
vol. 46, no. 10, pp. 2252-2264, Oct. 2016.

[41] T. M. Apostol, Calculus. Hoboken, NJ, USA: Wiley, 1967.

[42] M. Douze, H. Jégou, and F. Perronnin, “Polysemous codes,” in Proc.
Eur. Conf. Comput. Vis., Amsterdam, The Netherlands, Oct. 2016,
pp- 785-801.

[43] G. Huang, M. Ramesh, T. Berg, and E. Learned-Miller, “Labeled faces
in the wild: A database for studying face recognition in unconstrained
environments,” Univ. Massachusetts, Ambherst, Amherst, MA, USA,
Tech. Rep. 07-49, Oct. 2008.

[44] L. Li, W. Huang, 1. Y.-H. Gu, and Q. Tian, “Statistical modeling of
complex backgrounds for foreground object detection,” IEEE Trans
Image Process., vol. 13, no. 11, pp. 1459-1472, Nov. 2004.

Linhao Li was born in 1989. He received the B.S.
degree in applied mathematics and the M.S. degree
in computational mathematics from Tianjin Univer-
sity in 2012 and 2014, respectively, where he is
currently pursuing the Ph.D. degree with the School
of Computer Science and Technology. His research
interests focus on quantization and hashing learning,
sparse signal recovery, background modeling, and
foreground detection.

Qinghua Hu received the B.S., M.S., and Ph.D.
degrees from the Harbin Institute of Technology,
Harbin, China, in 1999, 2002, and 2008, respec-
tively. He was a Post-Doctoral Fellow with the
Department of Computing, Hong Kong Polytechnic
University, from 2009 to 2011. He is currently a
Full Professor and the Vice Dean of the School of
Computer Science and Technology, Tianjin Univer-
sity. His research interests are focused on rough sets,
granular computing, and data mining for classifi-
cation and regression. He has published more than
100 journal and conference papers in the areas of granular computing-based
machine learning, reasoning with uncertainty, pattern recognition, and fault
diagnosis. He was the PC Co-Chair of RSCTC 2010, CRSSC 2012, 2014,
RSKT 2014, and ICMLC 2014, and serves as a referee for a great number of
journals and conferences.

Yahong Han received the Ph.D. degree from Zhe-
jiang University, Hangzhou, China, in 2012. From
2014 to 2015, he was a Visiting Scholar with the
Prof. B. Yus Group, University of California at
Berkeley, Berkeley, CA, USA. He is currently an
Associate Professor with the School of Computer
Science and Technology, Tianjin University, Tianjin,
China. His current research interests include multi-
media analysis, retrieval, and machine learning.

Xin Li received the B.S. degree (Hons.) in elec-
tronic engineering and information science from the
University of Science and Technology of China,
Hefei, China, and the Ph.D. degree in electrical
engineering from Princeton University, Princeton,
NJ, USA, in 1996 and 2000, respectively.

He was a member of Technical Staff with Sharp
Laboratories of America, Camas, WA, USA, from
.~ 2000 to 2002. Since 2003, he has been a Faculty

|] Member with the Lane Department of Computer
S Science and Electrical Engineering, West Virginia
University. His current research interests include image and video coding and
processing. He is currently a member of the Image, Video, and Multidimen-
sional Signal Processing Technical Committee and an Associate Editor of the
IEEE TRANSACTIONS ON IMAGE PROCESSING.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

