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Shuang An, Qinghua Hu, Senior Member, IEEE, Witold Pedrycz, Fellow, IEEE,
Pengfei Zhu, and Eric C. C. Tsang

Abstract—Fuzzy rough sets (FRSs) are considered to be a pow-
erful model for analyzing uncertainty in data. This model encap-
sulates two types of uncertainty: 1) fuzziness coming from the
vagueness in human concept formation and 2) roughness rooted
in the granulation coming with human cognition. The rough set
theory has been widely applied to feature selection, attribute
reduction, and classification. However, it is reported that the clas-
sical FRS model is sensitive to noisy information. To address this
problem, several robust models have been developed in recent
years. Nevertheless, these models do not consider a statistical
distribution of data, which is an important type of uncertainty.
Data distribution serves as crucial information for designing an
optimal classification or regression model. Thus, we propose a
data-distribution-aware FRS model that considers distribution
information and incorporates it in computing lower and upper
fuzzy approximations. The proposed model considers not only the
similarity between samples, but also the probability density of
classes. In order to demonstrate the effectiveness of the proposed
model, we design a new sample evaluation index for prototype-
based classification based on the model, and a prototype
selection algorithm is developed using this index. Furthermore,
a robust classification algorithm is constructed with proto-
type covering and nearest neighbor classification. Experimental
results confirm the robustness and effectiveness of the proposed
model.

Index Terms—Data distribution, fuzzy rough covering, fuzzy
rough sets (FRSs), prototype selection, robust classification.
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I. INTRODUCTION

ROUGH set theory has attracted considerable attention
owing to its ability to characterize uncertainty in imper-

fect data [1], [2]. The classical model has been extended
to fuzzy rough sets (FRSs) to handle uncertainty in existing
information [3]. Various applications of FRSs were success-
fully developed these years, including feature evaluation,
attribute reduction [4], [5], prototype selection, classification,
and regression tasks [6]–[9].

Unfortunately, it has been reported that rough sets are sen-
sitive to noisy samples; a single noisy sample may exert
large impact on the computation of the lower and upper
approximations of a set [10]–[13]. Such sensitivity severely
limits the practical applications of rough sets. In recent years,
researchers try to alleviate the effects of noise and develop
robust rough set models. Initially, Yao et al. [12] proposed
a decision-theoretic rough set model to enhance the robust-
ness of Pawlak’s rough sets, and this model was successfully
applied to attribute reduction. Later, Slezak and Ziarko [14]
introduced variable precision into Pawlak’s rough sets by
allowing for misclassification aspect, which was considered
as noise. Further, a Bayesian rough set model was proposed
by defining set approximations on the basis of prior probabil-
ity [14]. Recently, Qian et al. [15] proposed a multigranulation
decision-theoretic rough set model that is robust to noise by
applying multigranulation theory to rough sets.

Some noise-tolerant models and algorithms have been devel-
oped for fuzzy data [16]. Salido and Murakami [17] presented
a robust model by applying the concept of variable precision
rough sets to FRSs (VPRSs-FRSs). Further, a variable preci-
sion FRS (VPFRS) model was proposed as a general robust
FRS framework [10]. In this model, the membership grades of
a sample to the lower and upper approximations are computed
with fuzzy inclusion. Later, Cornelis et al. [18] presented the
vaguely quantified rough set (VQRS) model and used it for
robust feature selection. The ordered weighted average FRS
theory was proposed inspired by VQRS [19]. In 2009, fuzzy
VPRSs (FVPRSs) were developed to enhance the robustness
of FRSs by increasing the lower approximation member-
ships (LAMs) of boundary points [13]. Cornelis et al. [20]
and Verbiest et al. [21] constructed a model of FRSs based
on ordered weighted average operators, and this model was
applied to prototype selection. In addition, Hu et al. [22] pro-
posed soft FRSs (SFRSs) by achieving a tradeoff between
the number of ignored samples and an increase in the LAM.
Further, in 2012, Hu et al. [23] and An et al. [24] proposed
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robust statistics and soft minimum enclosing ball (SMEB)-
based robust FRS models. In the same year, Ma and Sun [25]
presented a probabilistic rough set model over two universes.
In 2014, Sun and Ma [26] introduced soft sets into FRSs to
present SFRSs for robust decision making. In the same year,
Yao et al. [27] proposed a novel robust variable precision
(θ, σ )-FRS model based on fuzzy granules.

The essential concept underlying existing robust FRS mod-
els is to ignore so-called noisy samples when computing
lower and upper approximations. These models adopt different
approaches to ignore noisy samples. For instance, VPRS-FRS
and VPFRS overlook some boundary samples according to the
variable precision theory. SFRS finds noisy samples by con-
sidering a tradeoff between the number of ignored samples
and an increase in the LAM [22]. A common feature of the
ignored samples in the above-mentioned models is that they
all have low probability density (PD) values. Zhao et al. [13]
used this information to develop the FVPRS model, which
sets a threshold for PD values. When computing the lower
and upper approximations, if the PD value of a sample is
lower than the threshold, the sample is considered as a noisy
one. Under this approach, different thresholds can be set for
different datasets. It is known that different mechanisms for
detecting noise result in different distributions [28]. Therefore,
data distribution should be considered when detecting noisy
samples. However, current FRS models are data-distribution-
blind, i.e., these models do not consider the data distribution
when computing the lower and upper approximations.

In 2006, a theory of fuzzy probabilistic approximation
spaces was proposed by introducing probability into fuzzy
approximation spaces [29]. Under this approach, a probability
is assigned to each sample, and the probabilities are used to
compute the fuzzy cardinalities instead of the lower and upper
approximations. Following this approach, we propose a robust
FRS model by considering data distribution when computing
the lower and upper approximations. Accordingly, we refer
to this model as the probabilistic FRS (PFRS) model. When
computing the LAM of a sample x to a class A, we establish
a tradeoff between the similarity of x and y /∈ A and the PD
values y /∈ A. Similarly, when computing the upper approxi-
mation membership of a sample x to a class A, we establish
a tradeoff between the similarity of x and y ∈ A and the PD
values y ∈ A. In this way, the same boundary sample points
are determined as noise and ignored when computing lower
and upper approximations. Using the PFRS model, we design
a prototype selection algorithm (PSA) and a robust classifi-
cation algorithm (RCA), both of which are based on fuzzy
rough covering theory. First, we propose a sample evaluation
measure by combining PFRS and sample density values. With
the new measure, the samples with larger evaluation values are
classified correctly with higher probability. Then, the PSA is
designed using the proposed sample evaluation measure based
on fuzzy rough covering theory. Finally, using the PSA, the
RCA is also developed on the basis of fuzzy rough cover-
ing. In addition, some experiments are conducted to test the
effectiveness of the PSA and RCA.

In summary, the contributions of this paper are three-
fold. First, we propose a data-distribution-aware FRS model.

In this model, we calculate the lower and upper approxima-
tions by making a tradeoff between similarity and PD values.
Second, we develop a novel prototype evaluation index with
the proposed model, and construct an RCA based on the
prototype selection approach. Finally, we conduct extensive
experiments to verify the effectiveness of the proposed model
and algorithms.

This paper is organized as follows. Section II introduces and
discusses the classical FRS model as well as several exist-
ing robust FRS models; in addition, this section formulates
the problem statement based on the disadvantages of these
models. Section III introduces the proposed PFRS model and
analyzes its properties. Section IV describes the application of
the proposed model to prototype selection and classification
modeling. Section V describes a set of experiments conducted
to test the effectiveness of PFRS, PSA, and RCA. Finally,
Section VI summarizes our findings and concludes this paper.

II. PRELIMINARIES AND PROBLEM DESCRIPTION

We here introduce the preliminaries and describe the prob-
lem associated with existing robust FRS models.

Let U be a nonempty set with a finite number of objects,
and R be a fuzzy binary relation on U. R is a fuzzy equiv-
alence relation if R(x, x) = 1; R(x, y) = R(y, x), and
R(x, y) ≥ supminz∈U{R(x, z), R(z, y)}. The fuzzy equivalence
class [x]R associated with x and R is a fuzzy set on U, where
[x]R(y) = R(x, y) for all y ∈ U. F(y) is the membership of y
belonging to fuzzy set F. T is a triangular norm (t-norm) and
S is a triangular conorm (t-conorm). S(x, y) = max(x, y) is
the standard max operator. For a t-conorm S, σ is defined as
σ(a, b) = inf{c ∈ [0, 1] : S(a, c) > b}, a, b ∈ [0, 1] [30], [31].
An involutive negator N is a decreasing mapping [0, 1] →
[0, 1] satisfying N(0) = 1, N(1) = 0, and N(N(x)) = x. The
standard negator is defined as NS(x) = 1 − x [32]. Further,
ϑ(a, b) = sup{c ∈ [0, 1] : T(a, c) ≤ b}, a, b ∈ [0, 1] is called
a R-implicator. If T is lower semicontinuous, then ϑ is called
the T-residuation implication [31].

Definition 1: Let U be a nonempty universe, R be a fuzzy
equivalence relation on U, and F(U) be the fuzzy power set
of U. Given a fuzzy set F ∈ F(U), the lower and upper
approximations of F are defined as [3]

RF(x) = inf
y∈U

max{1 − R(x, y), F(y)}
RF(x) = sup

y∈U
min{R(x, y), F(y)}. (1)

The lower approximation indicates the certainty that a
sample belongs to a class, and the upper approximation indi-
cates the possibility that a sample belongs to a class. The
predictive ability of a sample is proportional to its LAM.
Subsequently, this model was generalized using other fuzzy
operators [30], [31], [33], [34]

RTF(x) = sup
u∈U

T
(
R(x, u), F(u)

)

RSF(x) = inf
u∈U

S(N(R(x, u), F(u))

Rσ F(x) = sup
u∈U

σ
(
N(R(x, u)), F(u)

)

RϑF(x) = inf
u∈U

ϑ
(
R(x, u), F(u)

)
. (2)
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FRSs have been successfully applied to attribute reduction,
and rule extraction [6], [7]. However, it is reported that they
are sensitive to noise, which limits their practical applications.
As mentioned in [23] and [24], the lower and upper approx-
imations of FRSs are sensitive to label noise because FRSs
are computed on the basis of the statistics of minimum and
maximum, which are sensitive to outliers.

Some robust FRS models have been proposed these years,
including β-precision FRS model [17], VPFRS model [10],
VQRS [18], FVPRSs [13], SFRSs [22], ordered weighted
average FRS theory [19], and robust statistics-based FRS
models [23]. Due to the page limitation, we just briefly review
a typical model: β-precision FRSs.

In [17], β-precision aggregation was introduced into FRSs
to present a robust model called the β-precision FRS model.
It is defined by the following four operators:

RSF(x) = Tβ y∈US
(

N
(
R(x, y)

)
, F(y)

)

RTF(x) = Sβ y∈UT
(
R(x, y), F(y)

)

RϑF(x) = Tβ y∈Uϑ
(
R(x, y), F(y)

)

Rσ F(x) = Sβ y∈Uσ
(

N
(
R(x, y)

)
, F(y)

)
. (3)

Here, Tβ and Sβ are β-precision quasi-T-norms and
β-precision quasi-T-conorms [17]. Tβ(x1, x2, . . . , xN) =
T(x1, x2, . . . , xn), β ∈ [0, 0.5), where x1 ≥ x2 ≥ · · · ≥ xN ,
and n = maxk{k ∈ [0, 1, . . . , N]|k ≤ ∑N

i=1 xi(1 − β)}.
Sβ(x1, x2, . . . , xN) = S(x1, x2, . . . , xn), β ∈ [0, 1], where
x1 ≥ x2 ≥ · · · ≥ xN , and n = maxk{k ∈ [0, 1, . . . , N]|k ≤∑N

i=1(1 − xi)(1 − β)}.
Let T(x, y) = min(x, y) and S(x, y) = max(x, y), the

lower and upper approximations of β-PFRS, degenerate to the
following form:

RβF(x) = min
β y∈U

max
(
1 − R(x, y), F(y)

)

RβF(x) = max
β y∈U

min
(
R(x, y), F(y)

)
. (4)

Given a decision class d, the LAM of x ∈ d reads as follows:

Rβd(x) = min
β y∈U−d

max
(
1 − R(x, y), d(y)

)

= min
β

(g1, ...gv) = min(g1, . . . , gu) (5)

where g1 ≥ g2 ≥ · · · ≥ gv, |U − d| = v, gi = 1 − R(x, yi)

(yi ∈ U − d), and u = maxk{k ∈ [0, 1, 2, . . . , v] : k ≤∑v
i gi(1 −β)}. And the number of samples neglected in com-

puting lower approximation of β-PFRS is v − u. β is the
direct parameter used for determining the number of ignored
samples.

The robustness analysis shows that Rβd(x) of β-PFRS
achieves robustness to noise by overlooking the some nearest
neighbors of x from different classes.

In fact, the robust FRS models can be categorized into
two classes. In the first approach, samples located around
the classification boundary that are considered as noisy sam-
ples are ignored. Models that follow this approach include
β-PFRS, VPFRS, SFRS, k-trimmed FRS, and SMEB-FRS.
These robust models differ only in terms of the method used

to determine the samples that should be ignored. The second
approach uses robust approximation operators. Models that
follow this approach include VQRS, FVPRS, k-mean FRS,
ordered weighted average-FRS (OWA-FRS), and k-median
FRS.

As mentioned above, the first approach adopts different
measures to ignore samples that are considered as noisy
samples. By analyzing existing robust FRS models, we can
conclude that the ignored samples have low probability
densities. If the PD of a sample is high, the possibility that
the sample belongs to noise is small. In addition, the PD
of a sample is closely related to its influence on the lower
approximation of FRS.

The above analysis shows that the probability densities of
samples are closely related to the determination of noise.
In addition, collected samples are usually contaminated by
noise, which submits to various distributions in practice. Thus,
several robust FRS models exhibit poor performance or are
ineffective in various applications. This is because the critical
parameters used for noise determination in different FRS mod-
els are set on the basis of experience. For datasets with various
distributions, these parameter values are usually adjusted using
experimental results. For example, for datasets that submit
to heavy-tailed distributions, the parameter k in k-trimmed
FRS should be larger than that for datasets with Gaussian
distributions. Thus, by using the distribution information, a
robust model can adaptively select the values of k for different
datasets. In conclusion, it is important to consider distri-
bution information of datasets when building a robust FRS
framework.

III. ROBUST FUZZY ROUGH SET MODEL CONSIDERING

DATA DISTRIBUTIONS

In this section, we first present a robust FRS model consid-
ering data distribution. Then, we discuss some properties of
the proposed model.

A. Data-Distribution-Aware Fuzzy Rough Sets

For FRS, the LAM RF(x) of x to its own class equals the
dissimilarity between x and the nearest neighbor y in other
classes. If y is a mislabeled sample, RF(x) is reduced con-
siderably. Further, if y is a noisy sample with a small error,
RA(x) is reduced slightly. Thus, two types of noise influence
the lower approximation of FRS. First, we introduce a mea-
sure for evaluating the influence of noisy samples on the lower
approximation of FRS during classification.

Definition 2: Let U be a nonempty universe, and let R be
a fuzzy equivalence relation on U. D is the decision attribute.
Sample x belongs to decision class d. p(y) is the probability
of {y|y /∈ d}. The influence of noisy sample y on the LAM of
x to d is defined as

IF(yx) = (
1 − P(y)

) · R(x, y). (6)

The similarity between x and y can be computed with Gaussian
kernel function.

It is shown that the influence of noisy sample y /∈ d on Rd(x)
is related to the similarity R(x, y) between x and y, and the
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Fig. 1. Influence of P(y) and R(x, y) on Rd(x). (a) R(x, y1) = R(x, y2).
(b) P(y3) = P(y4).

density at y. Suppose that the noisy sample y is the nearest
neighbor of x in U − d. The smaller the value of P(y) is,
the farther is y from U − d. Accordingly, y has a considerable
influence on the LAM of x to d. In addition, the higher the
similarity R(x, y), the greater is the influence of y on Rd(x).
Fig. 1 illustrates the above situation.

Considering Example 1, assume that y1 and y2 are two
noisy samples. Since R(x, y1) = R(x, y2) and P(y1) < P(y2),
IF(y1) > IF(y2). If y1 and y2 are used to compute Rd(x), the
relative error values of Rd(x) are

err1 =
(
1 − R(x, z1)

) − (
1 − R(x, y1)

)

1 − R(x, y1)
(7)

err2 =
(
1 − R(x, z2)

) − (
1 − R(x, y2)

)

1 − R(x, y2)
. (8)

Obviously, err1 > err2, which implies that the lower the PD
value of the sample is, the larger the IF of the sample is.
In the case of Example 2, since R(x, y3) < R(x, y4) and
P(y3) = P(y4), IF(y3) < IF(y4). The relative errors of
Rd(x) are

err3 =
(
1 − R(x, z3)

) − (
1 − R(x, y3)

)

1 − R(x, y3)
(9)

err4 =
(
1 − R(x, z4)

) − (
1 − R(x, y4)

)

1 − R(x, y4)
. (10)

Clearly, err3 < err4. It means that as y4 is more similar to x,
and it has a greater influence on Rd(x) than does y3.

The above analysis shows that if the nearest neighbor of x
is a noisy sample in other classes, is more similar to x, and
has a lower density, then its influence on the computed value
of Rd(x) is greater. Thus, both PD and similarity of a sample
influence the computation of the lower approximation. Now,
we present a way of determining noisy samples by looking at
the underlying probability.

Definition 3: Let U be a nonempty universe, R be a fuzzy
equivalence relation on U, and F(U) be the fuzzy power set
of U. The minimal probability of a normal sample for x is
defined as

Pmin(x) = inf
y∈U

S
(

N
(
P(y) · R(x, y)

)
, P(y)

)
(11)

where P(y) is the PD value at point y. Given a fuzzy set
A ∈ F(U), ∀y ∈ U, if A(y) ≥ Pmin, y is defined as a normal
sample; otherwise, y is a noisy sample.

Now, we present a robust FRS model which considers data
distribution.

Definition 4: Let U be a nonempty universe; R, a fuzzy
equivalence relation on U; and F(U), the fuzzy power set
of U, and A ∈ F(U). The probabilistic lower and upper

approximations of A are defined as

PRTA(x) = sup
y∈U

T
(
RP(x, y), A(y)

)

PRSA(x) = inf
y∈U

S
(

N
(
RP(x, y)

)
, A(y)

)

PRσ A(x) = sup
y∈U

σ
(

N
(
RP(x, y)

)
, A(y)

)

PRϑA(x) = inf
y∈U

ϑ
(
RP(x, y), A(y)

)
(12)

where

RP(x, y) =
{

R(x, y), P(y) ≥ Pmin(x)
0, P(y) < Pmin(x).

(13)

The above definitions (12) can be simplified as

PRTA(x) = sup
P(y)≥Pmin

T
(
R(x, y), A(y)

)

PRSA(x) = inf
P(y)≥Pmin

S
(

N
(
R(x, y)

)
, A(y)

)

PRσ A(x) = sup
P(y)≥Pmin

σ
(

N
(
R(x, y)

)
, A(y)

)

PRϑA(x) = inf
P(y)≥Pmin

ϑ
(
R(x, y), A(y)

)
. (14)

It means that the proposed model ignores the samples that
have lower PD values than Pmin when computing the lower
and upper approximation memberships.

Now, we present the above definition for a classification
problem. Let S(a, b) = SM(a, b) = max(a, b). The lower
approximation PRSA(x) can be simplified as follows:

PRSA(x) = inf
y/∈A

P(y)≥Pmin(x)

(
1 − R(x, y)

)
. (15)

Similarly, let T(a, b) = TM(a, b) = min(a, b), then the
T-upper approximation is simplified as

PRTA(x) = sup
y∈A

p(y)≥pmin(x)

(
R(x, y)

)
. (16)

We can see that the LAM of x to A is the minimal dissimi-
larity between x and its nearest neighbor y /∈ A that satisfies
P(y) ≥ Pmin. And the upper approximation membership of x
to A is the maximal similarity between x and its nearest neigh-
bor y ∈ A that satisfies P(y) ≥ Pmin. Thus, the new lower and
upper approximation operators achieve robustness to noise by
ignoring samples that have lower PD values.

In Definition 4, Pmin plays an important role in the devel-
opment of the PFRS model. Next, we demonstrate how to
determine Pmin in classification problems. When computing
the LAM PRSA(x) (PRϑA(x)), Pmin(x) is calculated as

Pmin(x) = inf
y/∈A

S
(
N

(
P(y) · R(x, y)

)
, P(y)

)
. (17)

Let S(a, b) = max(a, b), the above expression is reduced to

Pmin(x) = inf
y/∈A

max
(
1 − P(y) · R(x, y), P(y)

)
(18)

where P is the probability distribution of U−A. Note that (17)
returns the minimal PD value of the normal samples in U −A,
which is used to select a normal sample y for computing
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Fig. 2. Artificial dataset.

Fig. 3. Determining Pmin with Gaussian noise distribution.

PRSA(x). For computing the LAMs of different samples, the
returned values of Pmin are different. In practice, the proba-
bility distribution of data is usually unknown, and P(·) can be
estimated as

P(x) = 1

n

n∑

i=1

G(x, yi) = 1

n

n∑

i=1

exp

(
−‖ x − yi ‖2

2σ 2

)
. (19)

Now, we present an example to illustrate the computation
of Pmin. As shown in Fig. 2, x ∈ A, yi /∈ A; when comput-
ing PRSA(x), it is important to determine Pmin. Suppose that
the probability distribution of {yi} is a Gaussian distribution.
Sort the elements of {yi} in descending order based on the
similarity between x and yi, and obtain an ordered sample set
{y′

i}. Thus, R(x, y)(y ∈ {y′
i}) is a monotone minus function, and

P(y)(y ∈ {y′
i}) first increases and then decreases. There is a

minimum 1−P(y′
k) ·R(x, y′

k) of 1−P(y) ·R(x, y). When y′
k is a

normal sample, it can be used to compute PRSA(x). However,
y′

k may have higher density. Therefore, (17) addresses this
problem by selecting the maximum between 1−P(y′

k)·R(x, y′
k)

and P(y′
k). In Fig. 3, 1 − P(y) · R(x, y) does have a minimum.

From the figure, we can easily find Pmin, and there are four
samples with lower PD values than Pmin. Thus, the fifth near-
est neighbor of x is determined to be a normal sample, and y5
is used to compute the LAM of x to A, that is

PRSA(x) = inf
y/∈A

p(y)≥pmin

(
1 − R(x, y)

) = 1 − R(x, y5). (20)

The above analysis shows that when computing PRSA(x), it is
preferable that both R(x, y) and P(y) be large, where y /∈ A.
For determining Pmin(x), a tradeoff must be achieved between
R(x, y) and P(y). Similarly, when computing PRTA(x), it
is preferable that both R(x, y) and P(y) be large, where
y ∈ A. PFRS achieves robustness to datasets following dif-
ferent distributions by introducing PD distribution into FRS
model.

B. Property Analysis

Yao and Wong [35] proposed probabilistic approximations
with respect to two cases. For 0 ≤ β < α ≤ 1, the lower and

Fig. 4. Numbers of samples neglected with symmetrical and dissymmetrical
distributions.

upper probabilistic approximations of A ⊆ U are, respectively,
defined as

RA(x) = ∪{[x]|Pr(A|[x]) > β}
RA(x) = ∪{[x]|Pr(A|[x]) ≥ α}. (21)

Pawlak and Skowron [36] suggested using a rough mem-
bership function μA(x) = Pr(A|[x]) to redefine the two
approximations. And rough sets can be represented as

RA(x) = {x ∈ U|Pr(A|[x]) > 0}
RA(x) = {x ∈ U|Pr(A|[x]) = 1}. (22)

In [37], the (α, β)-lower approximation and upper approxima-
tion with μA(x) are defined, respectively, as

R(α,β)A(x) = {x ∈ U|Pr(A|[x]) > β}
R(α,β)A(x) = {x ∈ U|Pr(A|[x]) ≥ α}. (23)

Ma and Sun [25] defined the probabilistic rough set over two
universes.

Definitely, there is an obvious difference between PFRS and
above models in addressing noise. The mentioned probabilistic
rough set models address noise via controlling the values of
the rough membership function μA(x), and they are not related
to data distributions. And our model richly utilizes data distri-
bution information in handling noise, which makes PFRS be
robust to datasets with different distributions. This conclusion
is illustrated as follows.

In practice, sampled data usually follow different
distributions. Here, suppose that {yi} follows two kinds
of distributions, namely, Gaussian distribution (symmetrical
distribution), and Rayleigh distribution (asymmetrical distri-
bution). Fig. 4 shows the determined Pmin values with three
datasets following the same Gaussian distribution and three
datasets following the same Rayleigh distribution. In the
figure, x equals 0.85. P(y) is the PD at y. It is shown that
there are, respectively, 0, 2, 4, 3, 0, and 2 samples with lower
PD than determined values of Pmin. With our definition of
FRS, there are, respectively, 0, 2, 4, 3, 0, and 2 samples
neglected in computing the LAM of x to a class A.
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(a) (b)

(c) (d)

Fig. 5. Some special data distributions. (a) Circle distribution. (b) Moon
distribution. (c) Connected graph (1). (d) Connected graph (2).

Furthermore, if the data satisfy a uniform distribution,
P(y)(y ∈ {yi}) is equivalent. Obviously, Pmin(x) = P(y).
Thus, no sample should be overlooked in computing LAMs.
On occasion, datasets follow special or irregular distributions,
such as circle distribution, moon distribution, and connected
graphs shown in Fig. 5. PFRS is robust to noise with lower
PD in other classes by introducing probability distribution
of datasets, which guarantees that the samples used to com-
pute lower approximation of PFRS have higher densities
than Pmin. This results illustrate our PFRS model is neatly
adapt to datasets with different distributions, which is the key
difference from the existing robust FRS models.

In β-PFRS and VPFRS models, the number of samples
neglected is determined by the values of β. With the six
datasets used in Fig. 4, given a value of β, the number of
samples neglected are the same as each other. Some exper-
iments are operated on the above six cases. Particularly, if
datasets follow an uniform distribution, there should not be
any samples neglected. However, β-PFRS still neglects some
samples in computing the lower approximation.

For SFRS model, it is to find a tradeoff between LAMs
and number of samples neglected, which is similar to PFRS
on anti-noise. In this case, the SFRS model is not appropriate
to some special distributions, such as circle and connected
graph distributions [Fig. 5(a), (c), and (d)]. Some lower density
samples may be selected to compute the lower approximation
of SFRS.

In k-trimmed FRS model, the parameter k plays an impor-
tant role for anti-noise. As shown in Fig. 4, the parameter k
should have different values for six datasets. As to uniform
distribution, k should equal zero. However, the value of k is
set with subjectivity or via experiments. There is no relation-
ship between values of k and data distributions. With datasets
following different distributions, it is very difficult to select
suitable values of k. This will cause k-trimmed FRS exhibiting
unstable performance on different datasets.

1) SMEB-FRS Model: It is easily shown that SMEB-FRS
is only adapt to datasets following spherical distribution. For
example, given a dataset submitting half moon distribution,
the LAM of x to its own class with SMEB-FRS is sensitive to
noise, which is shown in Fig. 5(b). This effectively illustrates
that SMEB-FRS model is not adapted to nonconvex classifica-
tion problems. PFRS can easily address this kind of problems
by considering the probability distribution.

For the standard min operator TM(x, y) = min{x, y}
(t-conorm operator SM(x, y) = max{x, y}), TL(x, y) =
max{0, x+y−1} (t-conorm operator SL(x, y) = min{1, x+y})
and standard negator N(x) = 1 − x, some properties of PFRS
are discussed. The related conclusions are easily extended if
other fuzzy operators are used.

Proposition 1: ∀ A ∈ F(U), the following statements hold:

1) PRSA = N
(
PRT

(
N(A)

))
, PRTA = N

(
PRS

(
N(A)

))

2) PRϑA = N
(
PRσ

(
N(A)

))
, PRσ A = N

(
PRϑ

(
N(A)

))
. (24)

Proof: 1) ∀ x ∈ U

N
(

PRT
(
N(A(x))

)) = N

(
sup
y∈U

(
T
(

RP(x, y), N
(
A(y)

))))

= inf
y∈U

(
N

(
T
(

RP(x, y), N
(
A(y)

))))

= inf
y∈U

(
S
(

N
(
RP(x, y)

)
, A(y)

))
= PRSA.

(25)

Similarly, PRTA = N(PRS(N(A))), PRϑA = N(PRσ (N(A))),
and PRσ A = N(PRϑ(N(A))) holds.

Proposition 2: ∀ A ∈ F(U), if x is a normal sample, the
following statements hold:

1) PRSA ⊆ A ⊆ PRTA. 2) PRϑA ⊆ A ⊆ PRσ A. (26)

Proof: ∀ x ∈ U

PRSA(x) = inf
y∈U

S
(

N
(
RP(x, y)

)
, A(y)

)

≤ S
(

N
(
Rp(x, x)

)
, A(x)

)
. (27)

As x is a normal sample, x can be used to compute PRSA(x)

S(N(Rp(x, x)), A(x)) = S
(

N
(
R(x, x)

)
, A(x)

)

= S
(
0, A(x)

) = A(x). (28)

Thus, PRSA ⊆ A

PRTA(x) = sup
y∈U

T
(
RP(x, y), A(y)

) ≥ T
(
Rp(x, x), A(x)

)
. (29)

As x is a normal sample, x can be used to compute PRTA(x)

T
(
R(x, x), A(x)

) = T
(
1, A(x)

) = A(x). (30)

Thus, A ⊆ PRTA. Accordingly, PRSA ⊆ A ⊆ PRTA holds.
Similarly, PRϑA ⊆ A ⊆ PRσ A holds.
Proposition 3: Suppose A ⊂ U is a set, then the following

statements hold:

1) PRSA ⊇ RSA, PRTA ⊆ RTA.

2) PRϑA ⊇ RϑA, PRσ A ⊆ Rσ A. (31)

Proof: ∀x ∈ U, PRSA(x) = infy/∈A S(1 − RP(x, y), A(y)) ≥
infy/∈A S(1 − R(x, y), A(y)) = RSA(x). Thus PRSA ⊇ RSA.

∀x ∈ U, PRTA(x) = supy∈A T(RP(x, y), A(y)) ≤
infy∈A T(R(x, y), A(y)) = RTA(x). Thus PRTA ⊆ RTA.

Similarly, PRϑA ⊇ RϑA, and PRσ A ⊆ Rσ A holds.



AN et al.: DATA-DISTRIBUTION-AWARE FRS MODEL AND ITS APPLICATION TO ROBUST CLASSIFICATION 3079

Fig. 6. Artificial datasets.

IV. PROTOTYPE SELECTION AND CLASSIFICATION

A. Prototype Evaluation

A sample can be regarded as a prototype if it has a large
LAM to its class and high PD. We perform prototype evalua-
tion for each sample by combining the lower approximation of
FRSs and the PD value of the sample. The evaluation measure
is defined as

qx = RSA(x) · P(x). (32)

Note that RSA(x) can be replaced with RϑA(x). A large qx

implies that x is a good prototype. Furthermore, the sphere
of influence of each prototype is defined as rx = RSA(x).
As classical FRSs are sensitive to noise, we use PRSA(x) to
compute the lower approximation of samples.

The lower approximation of FRS can be used to measure
the certainty of samples to a class. And the PD can be used to
measure the reliability of samples. By incorporating the above
two measures, it is ensured that the selected prototypes with
the new measure are inner points which can express richly the
character of a class.

Now, an example is used to demonstrate the effectiveness
of (32). Fig. 6 shows the distribution of a dataset with two
classes, where y1, y2, y3 ∈ class1 and x1, x2, x3 ∈ class2. The
LAM and PD of xi(i = 1, 2, 3) and yj(j = 1, 2, 3) are (0.3,
0.8), (0.5, 0.1), (0.1, 0.15), (0.4, 0.7),(0.1, 0.1), and (0.6, 0.1),
respectively. Here, we take the product of LAM and PD as
the criterion for a sample to qualify as a prototype. If the
product is large, the sample is suitable as a prototype. Thus,
the evaluation values of xi are qx1 = 0.24, qx2 = 0.05, and
qx3 = 0.015, respectively, which implies that x1 is the most
suitable sample as a prototype. Further, x2 is a better prototype
than x3. The spheres of influence are rx1 = 0.3, rx2 = 0.5,
and rx3 = 0.1, respectively. Similarly, the evaluation values of
yj are qy1 = 0.28, qy2 = 0.01, and qy3 = 0.06, respectively.
Clearly, y1 is the most suitable sample as a prototype, followed
by y3. The spheres of influence are ry1 = 0.4, ry2 = 0.1, and
ry3 = 0.6, respectively.

B. Fuzzy Rough Prototype Selection

A PSA is constructed using the proposed prototype eval-
uation measure and sphere of influence. The algorithm is
presented in Table I.

The PSA is divided into two phases. The first phase eval-
uates the quality of each sample as a prototype using qs =
PRSA(s) · P(s), s ∈ S. The second phase selects the prototypes
with fuzzy rough covering theory. First, the most competent
prototype is selected, where rs is the sphere of influence of
the prototype. Then, the samples ss that are covered by the

TABLE I
FUZZY ROUGH PSA

(a) (b)

Fig. 7. Prototype selection with fuzzy rough covering. (a) Raw data set.
(b) Prototype set.

(a) (b)

Fig. 8. Prototype selection with (a) FRS and (b) PFRS.

sphere of influence of the selected prototype s are deleted
from S.

As shown in Fig. 7(a), let us suppose that x1 is the selected
prototype, and its sphere of influence is rx1 . Then, x1 is added
to the prototype set PS, and the samples for which the dissim-
ilarity with x1 is less than rx1 are removed from the training
set S. Similarly, y1 is added to the PS, and the samples for
which the dissimilarity with y1 is less than ry1 are deleted
from the training set S. Nevertheless, some samples in class1
are not covered by the sphere of influence of x1. In this case,
another prototype is selected among the remaining samples of
class1. If x2 is the best prototype candidate, it is added to the
prototype set and deleted from class1. The PSA will repeat
this process until class1 becomes empty. The same principle
applies to class2. Accordingly, the PSA outputs the PS and
the set R of spheres of influence of each prototype. Fig. 7(b)
shows the selected prototypes and their spheres of influence.

In practice, data are usually corrupted by noise. When FRSs
are used to evaluate prototypes, noisy samples are selected as
prototypes. Thus, the selected prototype set cannot be used for
classification. Here, we evaluate prototypes using the proposed
PFRSs, and noisy samples are not selected as prototypes.
Fig. 8 illustrates the above-mentioned problem.

The figure shows a dataset with two noisy samples,
x2 and y2. Suppose that x1 is selected as a prototype. Its sphere
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TABLE II
PFRS-BASED PROTOTYPE COVERING CLASSIFICATION ALGORITHM

(a) (b)

Fig. 9. Classification with prototypes. (a) Prototype cover classification.
(b) Nearest neighbor classification.

of influence is rx1 , and the number of covered samples is one
[Fig. 8(a)]. Moreover, x2 and y2 cannot be covered by any
sphere of influence. Finally, x2 and y2 are selected as pro-
totypes. If we use PFRS to select prototypes, the sphere of
influence of x1 is expanded [Fig. 8(b)], and all the samples in
class1 are covered. Similarly, all the samples in class2 are cov-
ered by the sphere of influence of y2. Thus, the noisy samples
x2 and y2 are not selected as prototypes. Therefore, prototype
selection based on PFRS is more robust to noise than that
based on FRS.

C. Prototype Covering for Robust Classification

Using the selected prototypes, we propose an RCA based
on fuzzy rough covering theory and the nearest neighbor rule,
which is presented in Table II. The input consists of the test
sample set TS, prototype set PS, and set of spheres of influ-
ence, R. Further, the output of the classification algorithm
consists of the label set L of test samples.

Given a test sample Tel, the algorithm first computes the
dissimilarity drpi between Tel and pi(pi ∈ PS). Then, it deter-
mines whether Tel is covered by the sphere of influence of a
prototype.

1) If Tel is covered only by the sphere of a certain prototype
pi(pi ∈ PS), i.e., drpi ≤ rpi , then Tel is marked with the
label TLpi of the prototype pi. Here, drpi denotes the dis-
similarity between Tel and prototype pi. In Fig. 9, x1 and
x2 are two prototypes selected from class1, and y1 is the
prototype selected from class2. Further, Te0, Te1, . . . , Te8
are test samples. In Fig. 9(a), the labels of Te1–Te3 can
be predicted using the above method.

TABLE III
SUMMARY OF DATASETS

2) If Tel is covered by the spheres of influence of sev-
eral prototypes pi, pj, . . . , pk, then Tel is classified into
the class to which the maximum prototypes belong.
For instance, Te4–Te7 are all covered by the spheres
of influence of multiple prototypes. In this case, if the
n(n = 1, . . . , C) largest number of prototypes in each
class are equal(for instance, Te6 and Te7), we apply the
NN rule to classify a test sample. Thus, the test sam-
ple is classified into the class TLpt to which the nearest
prototype pt belongs, i.e., drpt = min{drpi |pi ∈ PS}.

3) If a test sample is not covered by the sphere of influence
of any prototype, its label is also determined by the NN
rule. For example, in Fig. 9(b), Te8 is labeled class1 by
the NN rule. This usually occurs in the case of boundary
points.

V. EXPERIMENTAL ANALYSIS

In this section, we describe some experiments conducted
to test the robustness of the proposed PFRS set model using
13 datasets from the UCI database [38]. The datasets are
summarized in Table III.

Now, we test the robustness of the PSA on a binary arti-
ficial dataset containing 400 samples. Here, the samples in
each class agree to a Gaussian distribution. First, the artificial
dataset is contaminated into five datasets having noise levels
of 2%, 4%, 6%, 8%, and 10%. Here, noise is some mislabeled
samples. In experiments, we let β ∈ (0, 0.05), k ∈ {3, 4, 5}.

Fig. 10 shows a comparison of the selected prototypes
using Table I with the FRS, k-mean FRS, VPFRS, and PFRS
models. The selected prototypes were compared using raw
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TABLE IV
PERFORMANCE COMPARISON OF DIFFERENT CLASSIFIERS

(a) (b)

(c) (d)

(a1) (b1)

(c1) (d1)

Fig. 10. Prototype selection with different FRS models. (a) FRS, noise-
level = 0%. (b) k-mean FRS, noiselevel = 0%. (c) VPFRS, noiselevel = 0%.
(d) PFRS, noiselevel = 0%. (a1) FRS, noiselevel = 2%. (b1) k-mean FRS,
noiselevel = 2%. (c1) VPFRS, noiselevel = 2%. (d1) PFRS, noiselevel = 2%.

artificial data and noisy data with 2% noise. In the case of
the raw artificial dataset, three prototypes were obtained using
Table I with FRS. It is easy to see that a border sample in
class2 was selected as a prototype, which is not what we
want [Fig. 10(a)]. Further, two prototypes were obtained with
k-mean FRS, VPFRS, and PFRS [Fig. 10(b)–(d)]. When the
noise level of the dataset was 2%, the number of selected
prototypes was 30 with FRS [Fig. 10(a1)]. It is shown that
eight mislabeled samples were selected as prototypes with
FRS, which implies that Table I is sensitive to noise using
FRS. On the other hand, the number of prototypes obtained
with k-mean FRS, VPFRS, and PFRS are, respectively, 8, 2,

Fig. 11. Numbers of prototypes selected using different FRS models.

and 2 [Fig. 10(b1)–(d1)]. And there are none noisy samples
selected as prototypes. Thus, the PSA based on k-mean FRS,
VPFRS, and PFRS are more robust to noise than that based
on FRS.

Fig. 11 shows the prototypes selected from the six datasets
(an artificial dataset and five noisy datasets) using the PSA. It
can be seen that the number of selected prototypes increases
rapidly with the noise level in the case of FRS, whereas it
increases gradually in the case of PFRS and VQFRS. Noise
does not have any influence on the number of selected pro-
totypes in the case of OWA-FRS. The figure shows that
prototype selection based on PFRS, FVPRS, VPFRS, VQFRS,
SFRS, k-mean-FRS, and OWA-FRS is more robust to noise
than that based on FRS.

Some experiments were conducted to test the prototype-
based RCA. First, we compare our classification
algorithm with FRPS based nearest neighbor classifier
(FRPS-NNC) [21]. FRPS-NNC method first computes the
minimum granularity for each samples with FRS theory, and
selects the samples with smaller granularity than a threshold
as prototypes. And it adopts NN classification to predict the
labels of unknown samples with prototypes. The classification
accuracies of 13 datasets with FRS-prototype selection for
robust classification (PSRC) and FRPS-NNC methods are
shown in Table IV, where FRPS-1–FRPS-4 are four methods
for computing minimum granularity. It is shown that our
method performs best performance on glass, ionosphere, iris,
rice, segmentation, wine, wisconsin prognostic breast cancer,
and diffuse large B-cell lymphoma datasets.

Further, we compared our classification algorithm with sev-
eral state-of-the-art algorithms such as multilayer perceptron
(MLP) [39], linear support vector machine (LSVM) [40],
Bayes net [41], C4.5 [42], and k-nearest neighbors
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TABLE V
PERFORMANCE COMPARISON OF DIFFERENT CLASSIFIERS ON RAW DATASETS AND NOISY DATASETS

(KNNs) [43]. The classification accuracies of 13 datasets with
different classifiers are listed in Table V. The experimental
results contain two parts, i.e., classification accuracies of raw
datasets and that of noisy datasets. Here, noise level equals
0% means this is a raw dataset. Noise level equals 5% (or
10%) means there are 5% (or 10%) samples mislabeled artifi-
cially. With the total average accuracies, it is concluded both
PFRS-PSRC and FRS-PSRC conduct higher classification
accuracies than other algorithms, and PFRS-PSRC conducts
better performance than FRS-PSRC.

Considering the sensitivity of FRS, we replaced FRS with
FVPRS, VPFRS, VQFRS, SFRS, k-mean FRS, and OWA-FRS
for RCAs, and these algorithms are denoted by FVPRS based
prototype selection for robust classification, VPFRS-PSRC,
VQFRS-PSRC, SFRS-PSRC, k-mean FRS-PSRC, and OWA-
FRS-PSRC, respectively. The experimental results are listed
in Table VI. With the average classification accuracies, it is
shown PFRS-PSRC, FRS-PSRC, KNN, VPFRS-PSRC, SFRS-
PSRC, k-mean FRS-PSRC, and OWA-FRS-PSRC perform
better classification performance than other algorithms.

Furthermore, Fig. 12 shows the average classification accu-
racies on raw datasets and noisy datasets with Tables V and VI.
The numbers 1, 2, . . . , 13 are 13 algorithms, i.e., PFRS-
PSRC, FRS-PSRC, MLP, LSVM, BayesNet, C4.5, KNN,
FVPRS-PSRC, VPFRS-PSRC, VQFRS-PSRC, SFRS-PSRC,
k-mean FRS-PSRC, and OWA-FRS-PSRC. With Fig. 12(a),
we obtain that PFRS-PSRC, FRS-PSRC, SFRS-PSRC, and
OWA-FRS-PSRC produce higher classification accuracies.

(a) (b) (c)

(d)

Fig. 12. Average classification accuracies on raw datasets and noisy datasets.
(a)–(d) Algorithm index.

With Fig. 12(b) and (c), it is shown that all algorithms are
affected by noise, and the classification accuracies descend
along with noise increasing. Furthermore, Fig. 12(d) describes
the accuracy error between the average accuracies of raw
datasets and that of noisy datasets. The figure shows noise
produces larger influence on FRS-PSRC than that on other
algorithms except C4.5, and all FRS models mentioned are
more robust than classical FRS model. Moreover, we also
conclude PFRS-PSRC performs the best average classification
performance both on raw datasets and noisy datasets.

Furthermore, a statistical test, namely, the Wilcoxon signed-
rank test [44], was used to analyze the experimental results.
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TABLE VI
ROBUSTNESS COMPARISON OF DIFFERENT FRS MODELS

TABLE VII
WILCOXON SIGNED-RANK TEST RESULTS FOR TABLES V AND VI, T(38, 0.01) = 2.712

The comparison results between PFRS-PSRC and other clas-
sification algorithms listed in Tables V and VI are shown
in Table VII. Using this method, the test results satisfying
T > T(38, 0.01) = 2.712 imply that there is a signifi-
cant difference with significance level α = 0.01 between the
PFRS-PSRC algorithm and a certain algorithm. It is shown
that there are significance differences between PFRS-PSRC
and other algorithms except KNN. The above analysis shows
PFRS-PSRC performs better classification performance than
other algorithm except KNN.

VI. CONCLUSION

In this paper, we proposed a novel robust FRS model:
PFRS, which considers data distribution as important infor-
mation in computing lower and upper approximations and
a prototype selection method is proposed, a prototype-based
RCA is designed. The main conclusions of this paper can be
summarized as follows.

1) We showed that PFRS is robust to noise because it
ignores samples that are identified as noise by achiev-
ing a tradeoff between similarity and class PD. Thus, the

distribution information of samples is considered when
developing the PFRS model.

2) We designed a PSA and an RCA based on PFRS.
3) Extensive experiments were conducted to test the robust-

ness of the proposed model and algorithms. The robust-
ness of PFRS was tested and compared with other
models. The experimental results showed that PFRS is
robust to noise and the proposed classification algorithm
is more effective than some state-of-the-art algorithms.
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