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Abstract

Unsupervised feature selection (UFS) aims to reduce the time
complexity and storage burden, as well as improve the gen-
eralization performance. Most existing methods convert UFS
to supervised learning problem by generating labels with spe-
cific techniques (e.g., spectral analysis, matrix factorization
and linear predictor). Instead, we proposed a novel coupled
analysis-synthesis dictionary learning method, which is free
of generating labels. The representation coefficients are used
to model the cluster structure and data distribution. Specif-
ically, the synthesis dictionary is used to reconstruct sam-
ples, while the analysis dictionary analytically codes the sam-
ples and assigns probabilities to the samples. Afterwards,
the analysis dictionary is used to select features that can
well preserve the data distribution. The effective L2,p-norm
(0 < p ≤ 1) regularization is imposed on the analysis dic-
tionary to get much sparse solution and is more effective in
feature selection. We proposed an iterative reweighted least
squares algorithm to solve the L2,p-norm optimization prob-
lem and proved it can converge to a fixed point. Experiments
on benchmark datasets validated the effectiveness of the pro-
posed method.

Introduction
With the ubiquitous use of digital imaging devices, mo-
bile terminals and social networks, mountains of high-
dimensional data explosively emerge and grow. Curse of di-
mensionality leads to great storage burden, high time com-
plexity and failure of the classic learning machines (Wolf
and Shashua 2005). Feature selection searches the most
representative and discriminative features by keeping the
data properties and removing the redundancy. According to
the availability of the label information, feature selection
can be categorized into unsupervised (He, Cai, and Niyogi
2005), semi-supervised (Benabdeslem and Hindawi 2014),
and supervised (Nie et al. 2010) ones. Because of the di-
verse data structure, algorithms are also developed for multi-
task (Hernández-Lobato, Hernández-Lobato, and Ghahra-
mani 2015), multi-label (Chang et al. 2014) and multi-view
(Qian and Zhai 2014) feature selection.

Researchers developed many feature selection methods,
including filter, wrapper, and embedding methods. Filter
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methods use indices that reflect data properties, e.g., vari-
ance, Fisher score, Laplacian Score (He, Cai, and Niyogi
2005), consistency (Dash and Liu 2003), to evaluate fea-
tures. Different from filter methods, wapper methods rely
on the learning machines. The classification or clustering
performances of the learning machines are used to eval-
uate features (Guyon and Elisseeff 2003). For employing
greedy or genetic algorithms to search a subset of features,
wrapper methods are computationally intensive and there-
fore intractable for large-scale problems. Embedding meth-
ods perform feature selection in model construction. A fea-
ture weight vector or matrix can be learned to reflect the
feature importance (Wang, Tang, and Liu 2015).

Among of these approaches, unsupervised feature selec-
tion (UFS) is more challenging due to the lack of label infor-
mation. In unsupervised scenarios, the key factors for fea-
ture selection are locality preserving, cluster structure, and
self-representation. Motivated by the intuition that nearby
samples should belong to the same topic, locality preserv-
ing is widely used in feature selection, subspace learn-
ing, semi-supervised learning, etc. Laplacian Score is pro-
posed to reflect the locality preserving power of features
(He, Cai, and Niyogi 2005). In manifold learning, it is as-
sumed that the high-dimensional data are nearly lying on a
low-dimensional manifold. Hence, manifold regularization
is used in unsupervised feature selection algorithms to pre-
serve sample similarity (Li et al. 2012; Tang and Liu 2012;
Wang, Tang, and Liu 2015). Similar to the class labels in su-
pervised cases, cluster structure indicates the affiliation rela-
tions of samples, and it can be discovered by spectral cluster-
ing (SPEC (Zhao and Liu 2007), MCFS (Cai, Zhang, and He
2010), matrix factorization (NDFS (Li et al. 2012), RUFS
(Qian and Zhai 2013), EUFS (Wang, Tang, and Liu 2015)
) or linear predictors (UDFS (Yang et al. 2011), JELSR
(Hou et al. 2011)). Due to the feature correlations, the self-
representation property of features considers that one fea-
ture can be represented by a linear combination of other fea-
tures. The self-representation matrix reflects the importance
of features in reconstruction (Zhu et al. 2015). For different
feature selection methods, the three key factors are consid-
ered individually or simultaneously.

Beyond the success in feature selection (Xiang, Tong, and
Ye 2013), sparse learning has shown its power for data re-
construction (Mairal, Elad, and Sapiro 2008). For embed-
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ding methods in unsupervised feature selection, matrix fac-
torization is used to generate pseudo class labels, i.e., clus-
ter indicators. As it is difficult to solve the discrete con-
straints, the constraints are relaxed to be non-negative and
orthotropic (Tang and Liu 2012). The problems with ma-
trix factorization in the existing unsupervised feature selec-
tion methods are: (1) The factorization error is large because
the constraints on the cluster indicator matrix is too restric-
tive; (2) The learned basis matrix does not model the possi-
ble data variations well; (3) The cluster distribution should
follow some data distribution priors, which cannot be re-
flected by matrix factorization. In fact, matrix factorization
can be considered as a kind of data reconstruction. From the
viewpoint of sparse representation and dictionary learning,
the bases and cluster indicator in matrix factorization corre-
spond to the dictionary and representation coefficients ma-
trix, respectively. Similar to cluster indicator, representation
coefficients can reflect data distribution as well. In image
classification, an extension of the spatial pyramid match-
ing method was developed by generalizing vector quanti-
zation to sparse coding and achieved superior performance
(Yang et al. 2009). Compared with matrix factorization ,
dictionary learning can learn an over-complete dictionary
with more possible variations. Additionally, the reconstruc-
tion error can be much smaller because of the less restrictive
constraints. We can also specialize the representation coeffi-
cients with data priors to better model the data distribution.

In this paper, we propose a novel coupled dictionary
learning method (CDL-FS) for unsupervised feature selec-
tion. Different from the existing methods (e.g., NDFS (Li
et al. 2012), RUFS (Qian and Zhai 2013), EUFS (Wang,
Tang, and Liu 2015)) that use matrix factorization to gener-
ate cluster indicators, we reconstruct the data by dictionary
learning and use the representation coefficients to model the
data distribution. By imposing group sparsity regularization
(i.e., L2,p-norm, 0 < p ≤ 1) on the feature weight matrix,
redundancy is removed. Our main contributions include:
• A coupled analysis-synthesis dictionary learning frame-

work is proposed for unsupervised feature selection. The
synthesis dictionary is used to reconstruct the samples
while the analysis dictionary analytically codes the sam-
ples. Our analysis dictionary can select the important fea-
tures that can well preserve the data distribution.

• L2,p-norm (0 < p ≤ 1) regularization is imposed on
the analysis dictionary to perform sparse feature selec-
tion and remove redundancy features. An efficient itera-
tive reweighted least squares (IRLS) algorithm is devel-
oped with guaranteed convergence to a fixed point.

• Experiments on benchmark databases show that CDL-FS
outperforms the state-of-the-art unsupervised feature se-
lection methods. Our method is robust for different p val-
ues, especially, when p = 0.8, CDL-FS achieves better
results in terms of both classification and clustering per-
formance.

Problem statement
Let X ∈ R

d×n be the data matrix with each column xi ∈
R

d×1 being a sample. F = {f1; ...; fj ; ...; fd} denotes the

feature matrix, where fj is the jth feature vector. The ob-
jective of unsupervised feature selection is to select a subset
of features from F . Embedding methods perform feature se-
lection by learning a feature weight matrix V in model con-
struction. To generate cluster indicators, matrix factorization
is introduced to cluster X into k clusters {C1, C2, ..., Ck}.
The clustering model under matrix factorization framework
is formulated as follow:

min
U,A

‖X−UA‖2F
s.t.A ∈ {0, 1}k×n

,A1 = 1,
(1)

where U ∈ R
d×k is the bases matrix, A ∈ R

k×n is the
cluster indicator matrix, and 1 is the vector whose elements
are all one. Because of the discrete constraints, it is difficult
to solve the problem in Eq. (1). The constraints on A can be
relaxed to orthogonality (Tang and Liu 2012). The clustering
problem is formulated as a non-negative orthogonal matrix
factorization model:

min
U,A

‖X−UA‖2F
s.t.AAT = 1,A ≥ 0.

(2)

After obtaining the cluster indicator matrix A by solving
Eq. (2), a matrix V ∈ R

k×d is introduced to project the
data matrix X to the cluster indicator matrix A (Li et al.
2012; Qian and Zhai 2013). Different from NDFS and RUFS
that use sparse regression to project X to A, EUFS (Wang,
Tang, and Liu 2015) directly combines sparse learning with
matrix factorization. The bases matrix U is used for feature
selection and the sparsity regularization is imposed on U.

From the viewpoint of data reconstruction, we can use
dictionary learning to replace matrix factorization:

min
U,A

‖X−UA‖2F + λR(A), (3)

where U and A are the dictionary and representation coef-
ficients matrix, respectively. λ is a positive scalar constant
and R(A) is the regularization item imposed on A.

Compared with matrix factorization, the advantages of
dictionary learning are: (1) We can learn an over-complete
dictionary U, which covers more data variations.; (2) The
reconstruction error can be much lower because compared
with Eq. (1) and Eq. (2) there are no constraints; (3) We
can specialize A using R(A) (e.g., (group) sparsity regu-
larization), which can take the data distribution priors into
account. In image classification, great improvements have
been achieved by extending spatial pyramid matching from
vector quantization to sparse coding (Yang et al. 2009). The
coding coefficients reflect data distribution and discover the
cluster structure from a new perspective.

Analysis-synthesis dictionary learning
By dictionary learning, the data distribution and cluster
structure can be discovered. In this section, we propose an
analysis-synthesis dictionary learning model for unsuper-
vised feature selection.

In signal representation, a signal x is represented over
a predefined analysis dictionary V, e.g., Gabor dictionary.
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By simple inner product operations VTx, the representa-
tion coefficients vector a is easily got, i.e., VTx = a. The
coding is fast and explicit, which makes the analysis dictio-
nary quite attractive (Elad, Milanfar, and Rubinstein 2007;
Sprechmann et al. 2013). For sparse representation with a
synthesis dictionary U, a signal x is represented as x = Ua.
For synthesis dictionary, it is easy to learn a desired dictio-
nary and more effective in modelling local structure of im-
ages (Gu et al. 2014).

Given a synthesis dictionary U ∈ R
d×k, the data ma-

trix X ∈ R
d×n is reconstructed by the synthesis dictio-

nary, and accordingly, the representation coefficients matrix
is got. Meanwhile, an analysis dictionary V ∈ R

d×k can
also be introduced to code X, i.e., VTX. Then the coupled
dictionary learning model is formulated as follows:

min
U,V

∥∥X−UVTX
∥∥2

F
, (4)

To select the features that can well preserve the data distri-
bution, the group sparsity regularization is imposed on the
analysis dictionary. Then the dictionary learning model for
feature selection is:

min
U,V

∥∥X−UVTX
∥∥2

F
+ τ ‖V‖p2,p

s.t. ‖ui‖22 ≤ 1, i = 1, 2, ..., k,
(5)

where τ is a positive scalar constant and ui is the ith atom
of the synthesis dictionary U. The energy of the atoms
‖ui‖22 ≤ 1, i = 1, 2, ..., k is constrained to avoid trivial so-
lution and make the solution to Eq. (5) stable (Mairal et al.
2009). ‖V‖p2,p is L2,p-norm of the analysis dictionary V.
‖V‖p2,p is defined as follows:

‖V‖p2,p =
∑d

i=1

(∑k

j=1
v2ij

)p/2

=
∑d

i=1
‖vi‖p, (6)

where vi is the ith row of V, d is the number of features and
k is the number of atoms in the synthesis dictionary U.

When the value of τ increases to a certain value, most
rows of V become zeros. The ith row vi of V is not used in
coding X if the the elements of vi are zeros. Otherwise, for
the rows with non-zero elements, they play an important role
in coding X. Hence, ‖vi‖2 reflects the feature importance
and feature selection is performed by ranking features using
‖vi‖2.

The p value of L2,p affects the sparsity of V. When p = 1,
‖V‖p2,p is the standard L2,1-norm. When p = 0, ‖V‖p2,p is
the exact number of rows with non-zero elements. Hence,
the sparsity on V increases when the value of p decreases.
In supervised feature selection, the work in (Zhang et al.
2014) showed that when p = 0, the best results are achieved.
However, in this paper, we get different observations that the
minimal value of p does not lead to the best result for unsu-
pervised feature selection. When 0 < p < 1, compared with
L2,1-norm, a proper p value can boost the feature selection
performance to some extent (refer to results in Table 2 and
Table 3).

Optimization and algorithms
The model in Eq. (5) is generally non-convex. A variable
matrix A can be introduced and the problem in Eq.(5) is
relaxed as follows:

min
U,V,A

‖X−UA‖2F + μ
∥∥A−VTX

∥∥2

F
+ τ ‖V‖p2,p

s.t. ‖ui‖22 ≤ 1, i = 1, 2, ..., k,
(7)

where μ is a positive scalar constant. We use alteration min-
imization method to solve the optimization problem in Eq.
(7). The synthesis dictionary U and analysis dictionary V
are initialized as random matrices with unit Frobenius norm.
Then we iteratively update A and the analysis-synthesis dic-
tionaries U and V. The detailed optimization procedures are
summarized as follows:
A-subproblem: Fix U and V, and update A. We need to

solve the following least squares problem :

Â= argmin ‖X−UA‖2F + μ
∥∥A−VTX

∥∥2

F
, (8)

The closed-form solution to Eq. (8) is

Â =
(
UTU+ μI

)−1 (
UTX+ μVTX

)
. (9)

After A is updated, we need to update U and V. The
optimization problem becomes:

Û = argmin
U

‖X−UA‖2F s.t. ‖ui‖22 ≤ 1, (10)

V̂ = argmin
V

μ
∥∥A−VTX

∥∥2

F
+ τ‖V‖p2,p. (11)

U-subproblem: For the problem in Eq. (10), a variable
matrix H can be introduced and the optimal solution of U
can be got by Alternating Direction method of Multipliers
(ADMM) (Boyd et al. 2011).

Û = argmin
U

‖X−UA‖2F s.t.H = U ‖hi‖22 ≤ 1, (12)

Then Û is got by the following iteration steps:
⎧⎪⎨
⎪⎩

Ut+1 = argminU

∥∥X−UAt
∥∥2

F
+ β

∥∥U−Ht + St
∥∥2

F

Ht+1 = argminHβ
∥∥Ut −H+ St

∥∥2

F
s.t. ‖hi‖22 ≤ 1

St+1 = St +Ut+1 −Ht+1, update β if appropriate.
(13)

V-subproblem: The analysis dictionary V is updated by
solving the optimization problem in Eq. (11). In this paper,
we investigate the optimization of L2,p-norm under 0 < p ≤
1. The problem in Eq. (11) is convex but non-smooth when
p = 1, which has been well solved with guaranteed con-
vergence to the optimum solution (Nie et al. 2010). Unfor-
tunately, , when 0 < p < 1, the problem is non-convex.
Proximal gradient algorithm and rankone update algorithm
were proposed to deal with the case when 0 ≤ p ≤ 1 (Zhang
et al. 2014). Here, we use iterative reweighted least squares
(IRLS) to solve the L2,p-norm optimization problem.

Given the current Vt, we define diagonal weighting ma-
trices Gt as:

gtj =
p

2

∥∥vt
j

∥∥p−2

2
, (14)
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where gtj is the jth diagonal element of Gt and vt
j is the

jth row of Vt. Then Vt+1 can be updated by solving the
following weighted least squares problem:

Vt+1 = argminVQ(V|Vt)

= argminV

{
tr

((
A−VTX

)T (
A−VTX

))
+ τ

μ tr
(
VTGtV

)
}
,

(15)
Let ∂Q(V|Vt)

∂V = 0. We get

X(XTV −AT ) +
τ

μ
GtV = 0, (16)

Then the closed-form solution of Vt+1 is

Vt+1 = (XXT +
τ

μ
Gt)−1XAT , (17)

In Eq. (17), we need to compute the inverse of (XXT +
τ
μG

t). However, for some application, e.g., gene expres-
sion, the feature dimension is much larger than the number
of samples. Hence, the complexity to compute Vt+1 would
be very high. According to the Woodbury matrix identity:

(V +BCD)
−1

=
V−1 −V−1B(C−1 +DV−1B)−1DV−1,

(18)

Then we can further get

Vt+1 = Gt−1
X

(
XTGt−1

X+
τ

μ
I

)−1

AT , (19)

When the feature dimension is larger than the number of
samples, we use Eq. (19) to update Vt+1. Otherwise, Eq.
(17) is used.

After V is updated, the diagonal matrix G is updated by
Eq. (14). To get a stable solution, a sufficiently small toler-
ance value is introduced by defining

gtj =
p

2max(
∥∥vt

j

∥∥2−p

2
, ε)

. (20)

By iteratively updating Vt and Gt, the objective value
of Eq. (11) monotonically decreases and guarantees to con-
verge to a fixed point. Let L(V) =

∥∥AT −XTV
∥∥2

F
+

τ
μ‖V‖2,p. In the following, we will prove that L(V) can be
minimized by iteratively minimizing Q(V|Vt).
Lemma 1. Q(V|Vt) is a surrogate function, i.e., L(V) −
Q(V|Vt) attains its maximum when V = Vt.
Proof. Let F (V) = L(V) − Q(V|Vt). We will prove that
∀V, there is F (Vt) − F (V) ≥ 0. First, F (Vt) can be
rewritten as,

F (Vt) = L(Vt)−Q(Vt|Vt)

= τ
μ

((
1− p

2

)∑d
i=1

∥∥vt
j

∥∥p

2

)
,

(21)

Then we get F (Vt)− F (V)

F (Vt)− F (V) =

τ
μ

∑d
j=1

((
1− p

2

) ∥∥vt
j

∥∥p

2
− ∥∥vj

∥∥p

2
+ p

2

‖vj‖2

2

‖vt
j‖2−p

2

)
.

(22)

Algorithm 1: Algorithm of coupled dictionary learning
(CDL-FS) for unsupervised feature selection

Input: X ∈ R
d×n, μ and τ

Initialize U and V.
while not converged do

update A by Eq. (9);
update U by solving Eq. (10) using ADMM;
update V by solving Eq. (11) using IRLS;

end
Calculate feature weights wi = ‖vi‖2, i = 1, 2, ..., d
Output: Feature weight vector w

Let a =
∥∥vt

j

∥∥
2

and b =
∥∥vj

∥∥
2
. Then we have

�j =
(
1− p

2

) ∥∥vt
j

∥∥p

2
− ∥∥vj

∥∥p

2
+ p

2

‖vj‖2

2

‖vt
j‖2−p

2

=
(
1− p

2

)
ap − bp + p

2a
p−2b2

(23)

�j(b) is a polynomial function about b. We take the first and
second order derivatives of �j w.r.t b:

�′j(b) = p(ap−2b− bp−1), (24)

�”
j (b) = pap−2 − (p− 1)bp−2, (25)

Because b ≥ 0, a ≥ 0, 0 < p ≤ 1, it is easy to get
�”

j (a) = ap−2 > 0, �′j(a) = 0 and �j(a) = 0. Hence, we
have �j(b) ≥ �j(a) = 0 always holds. F (Vt) − F (V) =∑d

j=1 (�j) ≥ 0, i.e., L(V)−Q(V|Vt) attains its maximum
when V = Vt.

According to the bound optimization framework, we can
minimize L(V) by iteratively minimizing the surrogate
function Q(V|Vt). Then we can get the following lemma:

Lemma 2. Let Vt+1 = argmin
V

Q(V|Vt). We have

L(Vt+1) ≤ L(Vt).

Proof. It is easy to see that:

L(Vt+1) = L(Vt+1)−Q(Vt+1|Vt) +Q(Vt+1|Vt)(
Note : Vt = argmax

V
L(V)−Q(V|Vt)

)

≤ L(Vt)−Q(Vt|Vt) +Q(Vt+1|Vt)(
Note : Vt+1 = argmin

V
Q(V|Vt)

)

≤ L(Vt)−Q(Vt|Vt) +Q(Vt|Vt)
= L(Vt).

Hence, in each iteration, Vt+1 can be updated by mini-
mizing the surrogate function Q(V|Vt). The proposed al-
gorithm will finally converge to a stationary point.

In each iteration, A has a closed-form solution and is
updated by Eq. (9). U is update by solving Eq. (10) and
ADMM will rapidly converge. For the updating of V, we
propose to employ IRLS algorithm to solve the optimiza-
tion problem of Eq. (11). The algorithm of coupled feature-
selection for unsupervised feature selection is summarized
in Algorithm 1.
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Convergence analysis. We use alternation minimization
to solve the problem in Eq. (7). The optimization of A
is convex and A has a closed-form solution. For analysis-
synthesis dictionary pair, the ADMM algorithm can guar-
antee that the optimization of U converges to the optimum
solution. We also prove that the proposed IRLS algorithm
to solve Eq. (11) can converges to a stationary point. When
p = 1, the problem in Eq.(7) is a bi-convex problem for
{A, (U,V)}. The convergence of such a problem has al-
ready been intensively studied (Gorski, Pfeuffer, and Klam-
roth 2007), and the proposed optimization algorithm is ac-
tually an alternate convex search (ACS) algorithm. Hence,
when p = 1, the problem in Eq. (7) would finally converge.

We empirically find that the proposed CDL-FS algorithm
converges rapidly, as shown in Figure 1. We run CDL-FS
on AR face database by fixing μ and τ in Eq. (7). Addition-
ally, different values are assigned to p and the convergence
curves are similar. Figure 1 shows that when the value of
p decreases, the convergence speed becomes faster. When
p = 0.4 and p = 0.6, the algorithm converges in 10 itera-
tions.
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Figure 1: The convergence curve of CDL-FS with different
p values. (a) p=0.4; (b) p=0.6; (c) p=0.8; (d) p=1.0.

Computational complexity. The time complexity of
CDL-FS is composed of three parts, i.e., the updating of A,
U and V in each iteration. A has a closed-form solution and
the time complexity of updating A is O(kdn + k3 + k2n),
where k, d and n are the number of atoms in the synthe-
sis dictionary U, feature dimension and the number of sam-
ples, respectively. For the updating of U, let T1 be the iter-
ation number of the ADMM algorithm. The time complex-
ity of updating U is O(T1(dkn + k3 + k2d + d2k)). For
V, the key computation burden lies in the updating of Vt.
Hence, if Vt is updated by Eq. (17), the time complexity is
O(T2(d

3+dn2+dnk)), where T2 is the iteration number of
the IRLS algorithm. If Vt is updated by Eq. (19), the time
complexity is O(T2(n

3 + nd2 + dnk)).

Experiments
In this section, experiments are conducted to verify the ef-
fectiveness of the proposed algorithm on six benchmark
datasets. The classification and clustering performance are
evaluated for CDL-FS and all comparison methods. We also
give the performance of CDL-FS with different p values and
analyze the influence of p values.

Datasets
Six diverse publicly available datasets are selected for
comparison, including one face recognition dataset (i.e.,
warpAR10P1), one handwritten digit recognition dataset
(i.e., USPS2), one object recognition dataset (i.e., COIL203),
one spoken letter dataset (i.e., ISOLET4) and two microar-
ray datasets (i.e., SMK-CAN-1875and Prostate-GE6). The
statistics of the six datasets are shown in Table 1. The feature
dimension varies between 256 and 19993 while the sample
number varies between 102 and 9298.

Table 1: Summary of the benchmark datasets
DATA Samples Features Classes

warpAR10P 130 2400 10
USPS 9298 256 10

COIL20 1440 1024 20
SMK-CAN-187 187 19993 2

Prostate-GE 102 5966 2
ISOLET 1560 617 26

Comparison methods
Following the common experiment setting of unsupervised
feature selection, the clustering and classification perfor-
mances are evaluated. We compare CDL-FS with the fol-
lowing representative methods:

• Laplacian Score: A filter method that selects features ac-
cording to the power of locality preserving (He, Cai, and
Niyogi 2005).

• SPEC: Spectral Feature Selection. SPEC is a filter method
that uses spectral clustering (Zhao and Liu 2007).

• MCFS: Multi-cluster Unsupervised Feature Selection.
MCFS is a filter method that uses spectral clustering
and sparse regression with l1-norm regularization (Cai,
Zhang, and He 2010).

• UDFS: Unsupervised Discriminative Feature Selection.
UDFS generates pseudo class labels by a linear classifier
and uses l2,1-norm regularization (Yang et al. 2011).

1http://www2.ece.ohio-state.edu/ aleix/ARdatabase.html
2http://www-i6.informatik.rwth-aachen.de/ keysers/usps.html
3http://www.cs.columbia.edu/CAVE/software/softlib/coil-

20.php
4https://archive.ics.uci.edu/ml/datasets/ISOLET
5http://featureselection.asu.edu/datasets.php
6https://sites.google.com/site/feipingnie/
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Table 2: Classification accuracy (ACC %) of different feature selection methods. The top two results are highlighted in bold.
DATA Laplacian SPEC MCFS UDFS RUFS CDL-FS(0.4) CDL-FS(0.6) CDL-FS(0.8) CDL-FS(1.0)

warpAR10P 70.18 76.02 73.15 85.41 84.23 88.75 89.08 89.37 90.92
USPS 87.13 53.04 87.76 89.82 92.11 92.83 92.91 92.79 91.74

COIL20 76.65 33.76 85.34 89.41 90.18 91.99 92.83 92.15 88.45
Prostate-GE 67.46 73.06 76.63 75.53 74.94 78.46 76.2 76.87 75.27

SMK-CAN-187 56.62 61.27 63.32 62.84 63.72 63.88 64.79 65.59 64.79
ISOLET 69 61 67.65 73.2 75.24 76.59 76.55 76.97 76.75

Table 3: Clustering performance (NMI %) of different feature selection methods. The top two results are highlighted in bold.
DATA Laplacian SPEC MCFS UDFS RUFS CDL-FS(0.4) CDL-FS(0.6) CDL-FS(0.8) CDL-FS(1.0)

warpAR10P 36.26 45.74 18.17 38.72 39.86 39.22 38.37 42.05 48.26
USPS 54.73 30.14 55.89 56.95 58.48 57.97 58.55 58.01 59.12

COIL20 62.21 42.06 67.21 68.23 70.61 70.44 70.14 71.42 68.02
SMK-CAN-187 0.15 1.76 0.23 3.23 6.25 2.27 3.42 7.27 6.85

Prostate-GE 1.03 2.37 2.02 5.23 5.51 5.94 4.57 5.75 5.71
ISOLET 66.62 56.84 65.49 69.8 70.73 70.85 71.37 71.23 71.2

• RUFS: Robust Unsupervised Feature Selection. RUFS
generates cluster labels by nonnegative matrix factor-
ization and combines manifold learning (Qian and Zhai
2013).

Parameter setting
Following the experiment setting in (Yang et al. 2011;
Qian and Zhai 2013), for all the compression methods,
including Laplacian Score, SPEC, MCFS (Cai, Zhang,
and He 2010), UDFS (Yang et al. 2011) and RUFS
(Qian and Zhai 2013), the neighborhood size is set to
5 for all the six datasets. To conduct a fair compar-
ison, for all the unsupervised feature selections meth-
ods, we tune parameters using a grid-search strategy from
{10−9, 10−6, 10−3, 10−1, 100, 101, 103, 106, 109}. For the
proposed method, there are two parameters in Eq. (7), i.e., μ
and τ . In the experiment, μ is fixed to 1 and τ is tuned by the
grid-search strategy. Additionally, the number of atoms in
the synthesis dictionary is fixed as half the number of sam-
ples. The K-means algorithm is used to evaluate the clus-
tering performance of all the feature selection methods. As
the performance of K-means is sensitive to the initialization,
we run the algorithms 20 times and the average results are
reported. Additionally, K nearest neighbor classifier is se-
lected as the classifier and K is set as 1. For feature dimen-
sions, the numbers of features are set as {10, 20, ..., 150}.
As it is hard to select the feature dimension that achieves the
best classification and clustering performance, we report the
average results of different feature dimensions.

Experimental results
The classification and clustering results on six datasets for
all the comparison methods are listed in Table 2 and Table
3. Following the experiment setting in (Yang et al. 2011;
Qian and Zhai 2013), we use classification accuracy (ACC)
of nearest neighbor classifier and normalized mutual infor-
mation (NMI) to evaluate the performance of different fea-
ture selection methods. From the experimental results, the
following observations are induced:

• CDL-FS outperforms the state-of-the-art comparison
methods in terms of both clustering and classification per-
formance. There are three reasons: first, CDL-FS uses the
representation coefficients, rather than cluster labels, to
reflect the cluster structure and data distribution; second,
compared with matrix factorization methods, the learned
synthesis dictionary can better reconstruct the data and
smaller reconstruction error can be obtained; third, L2,p-
norm regularization introduces more sparsity.

• For different p values, the best average results are
achieved when p = 0.8. A smaller value of p leads to
more sparsity. Besides, the value of the regularization λ
(note that μ is fixes as 1 in the experiment) also affects
the sparsity of V. The results shows that the sparsity can
help to boost the performance of unsupervised feature se-
lection to some extent.

• Although CDL-FS does not consider the locality preser-
vation or manifold structure, our method still achieves
comparable performance.

Conclusions
In this paper we proposed a novel coupled dictionary learn-
ing (CDL-FS) method for unsupervised feature selection.
CDL-FS employs representation coefficients rather than
cluster indicators to model the data distribution. The syn-
thesis dictionary is used to reconstruct the data while the
analysis dictionary analytically codes the data. The analysis
dictionary is employed to select the features that can well
preserve the data distribution. L2, p (0 < p ≤ 1) -norm reg-
ularization is imposed on the analysis dictionary to introduce
more sparsity. We developed an IRLS algorithm with guar-
anteed convergence to solve L2, p-norm optimization prob-
lem. Experiments showed that CDL-FS achieved superior
performance to the state-of-the-art methods. Additionally,
the results showed that when p = 0.8 the best average classi-
fication and clustering performances were achieved. There-
fore, a proper p value can boost the performance compared
with the standard L2,1-norm. In the future, we will take lo-
cality preserving and manifold structure into account.
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