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Abstract
Almost all the existing representation based classi-
fiers represent a query sample as a linear combina-
tion of training samples, and their time and mem-
ory cost will increase rapidly with the number of
training samples. We investigate the representa-
tion based classification problem from a rather dif-
ferent perspective in this paper, that is, we learn
how each feature (i.e., each element) of a sam-
ple can be represented by the features of itself.
Such a self-representation property of sample fea-
tures can be readily employed for pattern classifi-
cation and a novel self-representation induced clas-
sifier (SRIC) is proposed. SRIC learns a self-
representation matrix for each class. Given a query
sample, its self-representation residual can be com-
puted by each of the learned self-representation ma-
trices, and classification can then be performed by
comparing these residuals. In light of the principle
of SRIC, a discriminative SRIC (DSRIC) method
is developed. For each class, a discriminative self-
representation matrix is trained to minimize the
self-representation residual of this class while rep-
resenting little the features of other classes. Ex-
perimental results on different pattern recognition
tasks show that DSRIC achieves comparable or su-
perior recognition rate to state-of-the-art represen-
tation based classifiers, however, it is much more
efficient and needs much less storage space.

1 Introduction
Nearest neighbor classifier (NNC) has been widely used in
machine learning and pattern recognition tasks such as face
recognition [Turk and Pentland, 1991], handwritten digit
recognition [Lee, 1991], and image classification [Boiman
et al., 2008], etc. NNC measures the distance/similarity be-
tween the query sample and each of the training samples
independently, and assigns the label of the nearest sample
to the query sample. If the training samples are distributed
densely enough, the classification error of NNC is bounded
by twice the classification error of Bayesian classifier. NNC
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does not need the prior knowledge of sample distribution and
it is parameter-free. However, NNC ignores the relationship
between training samples [Vincent and Bengio, 2001], and
often fails for high-dimensional pattern recognition tasks be-
cause of the curse of dimensionality [Bach, 2014]. Besides,
all training samples should be stored in NNC and it becomes
time-consuming in large scale problems [Muja and Lowe,
2014].

To reduce the computation burden of NNC and dilute the
curse of dimensionality, nearest subspace classifier (NSC)
was proposed. NSC measures the distance from the query
sample to the subspace of each class and then classifies the
query sample to its nearest subspace. The subspaces are of-
ten used to describe the appearance of objects under differ-
ent lighting [Basri and Jacobs, 2003], viewpoint [Ullman and
Basri, 1991], articulation [Torresani et al., 2001], and identity
[Blanz and Vetter, 2003]. Each class can be modeled as a lin-
ear subspace [Chien and Wu, 2002], affine hull (AH) [Vincent
and Bengio, 2001] or convex hull (CH) [Vincent and Bengio,
2001], hyperdisk [Cevikalp et al., 2008] or variable smooth
manifold [Liu et al., 2011]. When one class is considered as a
linear subspace, NSC actually represents a query sample by a
linear combination of the samples in that class. In such a case,
a set of projection matrices can be calculated offline, and thus
NSC avoids the one-to-one searching process in NNC, reduc-
ing largely the time cost. Some approximate nearest subspace
algorithms have also been proposed to further accelerate the
searching process [Basri et al., 2011]. Whereas, NSC only
considers the information of one class when calculating the
distance from the query sample to this class, and it ignores
the information of other classes.

As a significant extension to NSC, the sparse representa-
tion based classifier (SRC) [Wright et al., 2009] exploits the
information from all classes of training samples when repre-
senting the given query sample, and it has shown promising
classification performance [Wright et al., 2009]. Specifically,
SRC represents the query sample as a linear combination of
all training samples with l1-norm sparsity constraint imposed
on the representation coefficients, and then it classifies the
query sample to the class with the minimal representation er-
ror [Wright et al., 2009]. In spite of the promising classifi-
cation accuracy, SRC has to solve an l1-norm minimization
problem for each query sample, which is very costly. It has
been shown in [Zhang et al., 2011] that the collaborative rep-
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resentation mechanism (i.e., using samples from all classes to
collaboratively represent the query image) plays a more im-
portant role in the success of SRC. By using l2-norm to reg-
ularize the representation coefficients, the so-called collabo-
rative representation based classification (CRC) demonstrates
similar classification rates to SRC [Wright et al., 2009]. CRC
has a closed-form solution to representing the query sample,
and therefore has much lower computational cost than SRC.

Inspired by SRC and CRC, in [Chi and Porikli, 2014] a
collaborative representation optimized classifier (CROC) is
proposed to pursue a balance between NSC and CRC. In
[Yang et al., 2011], feature weights are introduced to the rep-
resentation model to penalize pixels with large error so that
the model is robust to outliers. A kernel sparse representa-
tion model is proposed by mapping features to a high dimen-
sional reproducing kernel Hilbert space [Gao et al., 2013]. In
[Zhang et al., 2015], a sparse representation classifier with
manifold constraints transfer is proposed to add manifold pri-
ors to SRC. Different variants of sparse representation models
are developed for face recognition with single sample per per-
son as well [Gao et al., 2014]. In addition, dictionary learning
methods have been proposed to learn discriminative dictio-
naries for representation based classifiers [Liu et al., 2014;
Harandi and Salzmann, 2015; Quan et al., 2015].

Most of the current representation based classifiers, includ-
ing NSC, SRC and CRC, are sample oriented, and they repre-
sent a query sample as a combination of training samples.
The time and memory complexity of such a “sample ori-
ented” representation strategy, however, will increase rapidly
with the number of training samples. For instance, in the
training stage the time complexities of NSC and CRC are
O(Kn3) and O((Kn)3), respectively, where K is the number
of classes and n is the number of samples per class. Clearly,
the complexity is polynomial w.r.t. the training sample num-
ber. In the testing stage, the memory complexities of NSC
and CRC are both O(dKn), where d is the feature dimen-
sion. It is linear to the number of training sample and can
be very costly for large scale pattern classification problems,
where there are many classes and a lot of samples per class.

Different from those previous representation based clas-
sifiers, in this paper we investigate the representation based
classification problem from a “feature oriented” perspective.
Instead of representing a sample as the linear combination
of other samples, we propose to learn how each feature (i.e.,
each element) of a sample can be represented by the features
of itself. Such a self-representation property of features gen-
erally holds for most high dimensional data, and has been ap-
plied in machine learning and computer vision fields [Xu et
al., 2015]. For example, in [Mitra et al., 2002] this property
is used to select the representative features by feature clus-
tering. In [Zhu et al., 2015], a regularized self-representation
model is proposed for unsupervised feature selection.

Motivated by the self-representation property of sample
features, we propose a novel self-representation induced clas-
sifier (SRIC), which learns a self-representation matrix for
each class by its training data. To classify a query sam-
ple, we project it onto the learned self-representation ma-
trix and compute its feature self-representation residual. The
query sample is then classified to the class which has mini-

mal feature self-representation residual. SRIC learns the self-
representation matrix individually for each class. In light
of the principle of SRIC, we then present a discriminative
SRIC (DSRIC) approach. Using all training data, for each
class a discriminative self-representation matrix is trained to
minimize the feature self-representation residual of this class
while representing little the features of other classes. The
classification of a query still depends on which class has the
minimal feature self-representation residual. DSRIC is intu-
itive and easy to understand. The main contribution of this
paper is summarized as follows

• We propose two novel feature-oriented representation
classifiers, i.e., self-representation induced classifier
(SRIC) and discriminative SRIC (DSRIC). The training
and testing time complexity of SRIC and DSRIC is ir-
relevant to the number of samples.

• We prove that SRIC is equivalent to NSC with l2-norm
regularization in terms of the final classification deci-
sion. Furthermore, we also prove that SRIC is es-
sentially the principal component analysis (PCA) with
eigenvalue shrinkage.

• Extensive experiments show that DSRIC has compara-
ble or superior recognition rate to state-of-the-art repre-
sentation based classifiers such as SRC and CRC; how-
ever, our theoretical complexity analysis and experimen-
tal results will show that DSRIC is much more efficient
and needs much less storage space than other represen-
tation based classifiers.

2 Self-representation for classification
2.1 Nearest subspace classifier
Suppose that we have a set of training samples from
K classes X = [X1, ...,Xk, ...,XK ], where Xk =
[x1k, ...,xik, ...,xnk] 2 Rd⇥n, is the sample subset of class
k and xik is the ith sample of it, d is the feature dimension
and n is the number of training samples in each class. Given
a query sample z, the nearest subspace classifier (NSC) rep-
resents it by the samples of class k as:

z = Xkak + ek (1)

where ak is the representation vector and ek is the represen-
tation residual vector.

To get an optimal representation of z, NSC minimizes the
representation residual by solving the following least square
problem:

âk = argminak kz�Xkakk22 (2)

The problem in Eq. (2) has a closed-from solution âk =
(XT

kXk)�1
X

T
k z if (XT

kXk)�1 is non-singular. In practice,
an l2-norm regularization can be imposed on ak to make
(XT

kXk)�1 more stable, resulting in an l2-norm regularized
least regression problem:

âk = argminak kz�Xkakk22 + � kakk22 (3)

The analytical solution to Eq. (3) is âk =
(XT

kXk + �I)�1
X

T
k z, where I is an identity matrix. Then
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the representation residual can be computed as rk =���z�Xk(XT
kXk + �I)

�1
X

T
i z

���
2

2
. NSC classifies z to the

class with the minimal representation residual. Let

Wk = Xk(XT
kXk + �I)�1

X

T
k (4)

The classification rule of NSC can be written as

label(z) = argmink kz�Wkzk22 (5)

Clearly, NSC learns a set of symmetric matrices Wk 2 <d⇥d

to reconstruct the query sample for classification.

2.2 Self-representation induced classifier
Representation based classifiers such as NSC, SRC and CRC
rely on the similarity between samples. They assume that a
query sample can be well represented by a linear combination
of the training samples. Here we consider the representation
based classification problem from a very different viewpoint.
Considering the fact that the features of a sample are cor-
related (especially for visual data), we propose to represent
each feature of a sample as the linear combination of all the
features of this sample. Finally, the sample is represented by
itself. Actually, such a self-representation strategy has been
used successfully in image processing and feature selection
[Xu et al., 2015]. For example, in image denoising a pixel
(i.e., a feature) is represented as the weighted average of its
neighboring pixels. In [Zhu et al., 2015], feature similarity is
defined and then representative features are selected by fea-
ture clustering.

Based on the above analysis, we present a self-
representation based classification scheme. We can write the
training subset of class k as Xk = [fk1; ...; fkj ; ...; fkd] where
fkj is the jth feature vector of Xk. We represent fkj as a
linear combination of all the feature vectors:

fkj = bj1 ⇥ fk1+, ...,+bjd ⇥ fkd + ekj (6)

where bj1, ..., bjd are the representation coefficients and ejk

is the representation residual vector. Let bj = [bj1, ..., bjd].
Then Eq. (6) can be rewritten as fkj = bjXk. For all the
feature vectors in Xk, they can be represented by Xk with
Eq. (6). Let Bk = [b1;b2; ...;bd] and Ek = [e1; e2; ...; ed].
The representation of all features can be written as:

Xk = BkXk +Ek (7)

We call the feature based representation model in Eq. (7) self-
representation because it utilizes Xk to represent itself. To
minimize the self-representation residual while avoiding the
trivial solution, we have the following optimization problem:

minBk l(Ek) +R(Bk)
s.t.Xk = BkXk +Ek

(8)

where l(Ek) is the loss function and R(Bk) is the regulariza-
tion item. If we choose square loss and F -norm regulariza-
tion, the problem in Eq. (8) becomes:

B̂k = argminBk kXk �BkXkk2F + � kBkk2F (9)

Apparently, the problem in Eq. (9) has a closed-form solu-
tion:

B̂k = XkX
T
k

�
XkX

T
k + �I

��1 (10)

0B z 1B z 2B z 3B z 4B z 5B z 6B z 7B z 8B z 9B z

0B 1B 2B 3B 4B 5B 6B 7B 8B 9B

z

Figure 1: Top row: self-representation matrices Bk, k =
0, 1, ..., 9 learned from the USPS database. Bottom row: a
query sample (from class 0) and its reconstructed images
Bkz, k = 0, 1, ..., 9.

where I 2 <d⇥d is an identity matrix. Given a query sample
z, its self-representation can then be computed as B̂kz and
the self-representation residual is e = z� ˆ

Bkz.
For each class, we can learn its self-representation matrix

as above, and then we have a set of K self-representation
matrices, B1, ...,Bk, ...,BK (we omit the superscript “ ˆ ”
for the convenience of expression). The query sample z can
be represented by each of the matrices and the classification
can be made by checking which class has the minimal self-
representation residual:

label(z) = argmink kz�Bkzk22 (11)

We call the above classifier self-representation induced clas-
sifier (SRIC).

We use an example to illustrate how SRIC works. As
shown in Fig. 1, 10 self-representation matrices Bk, i =
0, 1, ..., 9, are learned from handwritten digit dataset USPS
[Hull, 1994]. Certainly, matrix Bk tends to represent better
the features of sample from class k. Fig. 1 also shows a query
sample z (from class 0) and the reconstructed samples Bkz

by all Bk. We can see that z is well represented by B0 and
it has the minimal self-representation residual on class 0, re-
sulting in a correct classification.

2.3 Equivalence between SRIC and NSC
The NSC represents a sample from the perspective of sample
similarity, while the proposed SRIC represents a sample from
the perspective of feature similarity. Though the representa-
tion strategies are different, interestingly, it can be proved that
they lead to the same classification result. We have the fol-
lowing theorem.
Theorem 1 SRIC is equivalent to l2-norm regularized near-
est subspace classifier, i.e., Bk=Wk, k = 1, 2, ...,K.
Proof 1 Applying singular value decomposition to Xk, Xk =
Uk⇤kV

T
k , where Uk 2 <d⇥d, ⇤k 2 <d⇥n and Vk 2 <n⇥n.

Then Bk and Wk becomes:

Wk = Xk(X
T
k Xk + �I)�1XT

k

= Uk⇤kV
T
k (Vk⇤

T
k U

T
k Uk⇤kV

T
k + �I)�1Vk⇤

T
k U

T
k

= Uk⇤k(⇤
T
k ⇤k + �I)�1⇤T

k U
T
k

Bk = XkX
T
k

�
XkX

T
k + �I

��1

= Uk⇤kV
T
k Vk⇤

T
k U

T
k (Uk⇤kV

T
k Vk⇤

T
k U

T
k ++�I)�1

= Uk⇤k⇤
T
k (⇤k⇤

T
k + �I)�1UT

k

If d < n, we let ⇤k = [Hk 0], where Hk 2 <d⇥d. Then we
have

⇤b = ⇤k(⇤
T
k ⇤k + �I)�1⇤T

k = Hk(H
T
i Hk + �I)�1HT

k
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⇤w = ⇤k⇤
T
k (⇤k⇤

T
k ++�I)�1 = HkH

T
k (HkH

T
k + �I)�1

Because Hk is a diagonal matrix, we have ⇤b = ⇤w. As Wk =
Uk⇤wU

T
k and Bk = Uk⇤bU

T
k , we can get Bk = Wk.

If d > n, ⇤k =


Hk

0

�
, where Hk 2 <n⇥n.

⇤b =

✓
Hk(H

T
k Hk + �I)

�1
HT

k 0
0 0

◆
and ⇤w =

✓
HkH

T
k (HkH

T
k + �I)

�1
0

0 0

◆
. In this case, we can

have the same conclusion, i.e., ⇤b = ⇤w and Bk = Wk.
If d = n, let ⇤k = Hk, ⇤b and ⇤w are the same as those ⇤b

and ⇤w when d < n. Hence, Bk = Wk also holds on when d = n.

From the above proof, we can have the following remark.

Remark 1 SRIC is equivalent to principal component anal-
ysis with shrinkage.

From the Proof, we can see that, Xk and Bk have the same
set of eigenvectors, i.e., Uk. Denote the hth eigenvalue of
Xk as �h, then the hth eigenvalue ⇤bh of Bk will be �2

h

�+�2
h

.
Therefore, for SIRC the eigenvalues of Bk will be shrunk
to the range [0 1). The smaller the eigenvalue, the less the
shrinkage ratio.

3 Discriminative self-representation induced
classifier

3.1 Discriminative self-representation
The learning of self-representation matrix Bk in SRIC is
rather generative but not discriminative since it only depends
on the training data of class k. In light of the principle of
self-representation in SRIC, we can then propose a discrimi-
native self-representation induced classifier (DSRIC), which
exploits the training data from all classes to learn Bk.

SRIC aims to learn a Bk such that the self-representation
residual kXk �BkXkk2F could be minimized. However,
SRIC does not take the samples of other classes into account.
In order to make the classification more discriminative, we
also expect that Bk cannot well represent the features of other
classes. One may consider to maximize kXj �BkXjk2F ,
j 6= k while minimizing kXk �BkXkk2F . However, this
will make the whole objective function non-convex. Another
much easier but still very reasonable choice is to learn a Bk

such that the self-representation of Xj , j 6= k, over it will ap-
proach to zero, i.e., kBkXjk2F is very small. In other words,
Bk is discriminative to represent the features of class k but
not other classes. With these considerations, we propose the
following DSRIC model to learn Bk:

bBk = argmin
Bk

⇢
kXk �BkXkk2F + �2 kBkk2F
+�1

P
j 6=k kBkXjk2F

�
(12)

where �1 and �2 are the regularization parameters.
In Eq. (12), the first term kXk �BkXkk2F aims to

minimize the self-representation residual; the second termP
j 6=k kBkXjk2F enforces that Xj , j 6= k will not be well

represented by Bk; the last term regularizes Bk to make the

solution more stable. It is apparent that we still have a closed
form solution of Bk:

B̂k = XkX
T
k (XkX

T
k + �1

X
j 6=k

XjX
T
j + �2I)

�1 (13)

As shown in Fig. 2, we use a subset of AR database
[Martinez, 1998] to show the difference between SRIC and
DSRIC. Fig. 2(a) shows the query sample that belongs to sub-
ject 10. In Fig. 2(b), the query face z is well reconstructed by
B10 learned by SRIC. However, from Fig. 2(d), we can see
that z is misclassified to subject 15. The reconstructed faces
using DSRIC are shown in Fig. 2(c). From Fig. 2(e), we
can see that z is correctly classified to subject 10. Though the
reconstruction ability of SRIC is superior to DSRIC, DSRIC
has better discrimination ability than SRIC.

10B z1B z 2B z 3B z 4B z 5B z 6B z 7B z 8B z 9B z

(b) reconstructed faces by SRIC 

(c) reconstructed faces by DSRIC 

(d) representation residual of SRIC (e) representation residual of DSRIC

z
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Figure 2: (a)query face z; (b) reconstructed faces by SRIC;
(c)reconstructed faces by DSRIC; (d) representation residual
of each class (SRIC); (e) representation residual of each class
(DSRIC)

.

3.2 Classification and algorithms
After we get a set of matrices B1,B2, ...,BK , a query sample
z is classified to the class with the minimal reconstruction
error.

label(z) = argmink kz�Bkzk22 (14)

The algorithm of DSRIC is shown in Algorithm 1.

Algorithm 1 The algorithm of discriminative self-
representation induced classifier (DSRIC)
Input: A query sample z and the training set X =

[X1,X2, ...,XK ].
Output: label(z)

1: Calculate B1,B2, ...,BK by Eq. (13);
2: Calculate rk = kz�Bkzk22;
3: Get label(z) = argmink{rk}.

3.3 Complexity analysis
In this section, we discuss the time and space complexity of
SRIC, DSRIC.
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Training complexity
SRIC and DSRIC need to learn K self-representation matri-
ces in the training stage by Eq. (10) and Eq. (13), respec-
tively. The time complexity to solve Eq. (10) and Eq. (13)
is O(d3). Hence the training time complexity of SRIC and
DSRIC is O(Kd3). During the training stage, all the methods
should contain the training set. Hence, the training memory
of SRIC and DSRIC is Kd2 +Kdn.

Testing complexity
In the testing stage, the time complexity of SRIC and DSRIC
is O(Kd2). As DSRIC only needs to store a set of d⇥ d ma-
trices, the storage space of DSRIC is Kd2. When the number
of samples is much larger than the number of feature dimen-
sions, the advantage of DSRIC in time complexity and stor-
age consumption is quite significant.

We will compare SRIC and DSRIC with NNC [Cover and
Hart, 1967], NSC [Chien and Wu, 2002], NAH [Vincent
and Bengio, 2001], NCH [Vincent and Bengio, 2001], SRC
[Wright et al., 2009], CRC [Zhang et al., 2011] and CROC
[Chi and Porikli, 2014] in the experiments. The time and
space complexity in the training and testing stages of all the
methods are listed in Table 1.

Table 1: Time complexity and memory consumption of dif-
ferent classifiers

method NNC SRC NSC SRIC
Time(train) / / O(Kn3) O(Kd3)
Time(test) O(Kdn) O(d2n") O(Kdn) O(Kd2)

Memory(train) / / 2Kdn + n2 Kd2 + Kdn
Memory(test) Kdn Kdn 2Kdn Kd2

method NCH CRC CROC DSRIC
Time(train) / O((Kn)3) O((Kn)3 + Kn3) O(Kd3)
Time(test) O((Kn)3) O(Kdn) O(Kdn) O(Kd2)

Memory(train) / 2Kdn + (Kn)2 3Kdn + (Kn)2 Kd2 + Kdn
Memory(test) Kdn 2Kdn 3Kdn Kd2

4 Experimental analysis
In this section, we test the performance of DSRIC1 on eight
UCI datasets, two handwritten digit recognition databases,
two face recognition database and one gender classification
dataset. We compare the proposed classifier with eight popu-
lar and state-of-the-art classifiers, including the nearest neigh-
bor classifier (NNC) [Cover and Hart, 1967], nearest sub-
space classifier (NSC) [Chien and Wu, 2002], nearest con-
vex hull classifier (NCH) [Vincent and Bengio, 2002], near-
est affine hull classifier (NAH) [Vincent and Bengio, 2002],
sparse representation based classifier (SRC) [Wright et al.,
2009], collaborative representation based classifier (CRC)
[Zhang et al., 2011] and collaborative representation opti-
mization classifier (CROC) [Chi and Porikli, 2014]. Among
them, NNC is a baseline benchmark, and the remaining are
all representation based classifiers.

The performance of different classifiers is evaluated from
three aspects: classification accuracy, the running time and
memory consumption in the testing stage. In order to easily

1Since SRIC is equivalent to NSC, the results of SRIC will not
be reported.

show the speedup and memory saving of DSRIC over other
methods, in all the following experiments we take the running
time and memory consumption of DSRIC as a unit (i.e., 1),
and report the results of other methods based on it. All algo-
rithms are run in an Intel(R) Core(TM) i7-2600K (3.4GHz)
PC.

4.1 Parameter setting
There are two parameters in DSRIC: �1 and �2. In all the
experiments, �2 is fixed as 0.001 and �1 is chosen on the
training dataset by five-fold cross-validation. For the com-
pared representation based methods, the parameters in NCH
and NAH are set as 1 and 100, respectively, as suggested in
the original paper; the regularization parameter in NSC, SRC
and CRC is tuned from {0.0005, 0.001, 0.005, 0.01} and the
best results are reported; following the experiment setting in
[Chi and Porikli, 2014], the parameter of CROC is chosen by
five-fold cross-validation on the training set.

4.2 UCI datasets
We first use eight datasets (derm, german, heart, hepatitis,
iono, rice, thyroid, wdbc, wpbc, yeast) from the UCI machine
learning repository [Asuncion and Newman, 2007] to evalu-
ate the performance of DSRIC. The number of classes (c),
number of features (f) and number of samples (s) of the eight
datasets are illustrated in the right column of Table 2. The av-
erage classification accuracy(%), testing time (seconds) and
testing memory (MB) over the eights datasets are listed at the
bottom of Table 2.

From Table 2, we can see that the accuracy of DSRIC is
about 2% higher than NSC, SRC and CRC, and 3% higher
than CROC. Besides, DSRIC is much faster than the other
representation based classifiers. Compared with NSC, SRC,
CRC and CROC, the running time speedup by DSRIC is 64,
547, 106 and 130, respectively. Because NAH and NCH have
to solve a QP problem for each query sample, the time con-
sumption is very high compared with other classifiers. In
terms of memory requirement, in this experiment DSRIC also
has clear advantage.

Table 2: Classification accuracy, testing time and testing
memory on UCI datasets.

Database NNC SRC NSC NCH NAH CRC CROC DSRIC c/f/s
derm 96.1 97.1 97.4 96.5 96.9 97.1 97.7 97.6 6/34/366

german 68.8 74.1 70.6 70.6 71.3 72.9 72.9 73.4 2/20/1000
heart 76.7 83 78.1 76.3 76.5 84.1 83.3 83.7 2/13/270

hepatitis 82.5 86.8 86.8 82.1 81.7 84.7 86.7 87.5 2/19/155
iono 86.4 91 94.4 89.2 80.3 92.7 83.3 94.7 2/34/351
rice 80 82.9 84.7 80.7 80.5 83.8 82.9 86.6 2/5/104

thyroid 95.3 90.2 95.8 96.3 95.8 91.1 87.4 95.8 3/5/215
wdbc 95.4 93.5 92.3 94 93.9 94.7 95.3 95.6 2/30/569
wpbc 70.7 79.4 76.8 75.4 74.7 76.3 79.4 80.9 2/33/198
yeast 48.8 54.9 56.9 49.3 50.1 54.6 54.3 57.7 10/7/1484

Accuracy 80.1 83.3 83.4 81.0 80.2 83.2 82.3 85.4
Time 2.8⇥104 547 64 4.9⇥105 6.6⇥105 106 130 1

Memory 10.48 10.48 20.97 10.48 10.48 20.97 31.45 1

4.3 Handwritten digit recognition
USPS The USPS dataset contains 7,291 training and 2,007
testing images. Each class has about 650 training samples,
and each handwritten digit sample is a 16⇥16 image. The
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experimental results are listed in Table 3. Since each class
has enough training samples and the feature dimension is not
high in this experiment, the simple NNC achieves the best
accuracy. The recognition rate of DSRIC is only 0.3% lower
than NNC. However, DSRIC is significantly faster than NNC
with 10,000 times speedup. In addition, the memory con-
sumption of NNC is 2.8 times larger than DSRIC.

Table 3: Recognition rate, testing time and testing memory
on USPS dataset.

Method NNC SRC NSC NCH NAH CRC CROC DSRIC
Accuracy 94.6 94.0 94.3 91.9 92.3 90.6 90.1 94.3

Time 1⇥104 1⇥104 165.6 5.1⇥104 7.7⇥104 150.8 977.1 1
Memory 2.848 2.848 5.696 2.848 2.848 5.696 8.544 1

MNIST The MNIST dataset includes a training set of 60,000
samples and a test set of 10,000 samples. The size of each im-
age is 28⇥28 and there are 10 classes of digit images. Com-
pared to USPS, there are more training samples. Table 4 lists
the recognition rate, testing time and testing memory by dif-
ferent methods. Similar to the results in USPS, the recogni-
tion rate of DSRIC equals to NSC, and is 1.4% lower than
NNC. However, DSRIC avoids the one-to-one searching pro-
cess in the training set and is 18,000 faster than NNC, which
is very important in real-time applications. Compared with
SRC, DSRIC is 51 times faster and saves 7.65 times the mem-
ory. Please note that the performances of NCH, NAH, CRC
and CROC are not reported because these methods need to
process a 60,000⇥60,000 square matrix and out-of-memory
in our PC.

Table 4: Recognition rate, testing time and testing memory
on MNIST dataset

Method NNC SRC NSC NCH NAH CRC CROC DSRIC
Accuracy 97.1 94.5 95.7 / / / / 95.7

Time 1.8⇥104 6.3⇥104 649.3 / / / / 1
Memory 7.653 7.653 15.306 7.653 7.653 15.306 22.959 1

4.4 Face recognition
LFW database The LFW database contains images of 5,749
subjects in unconstrained environment. LFW-a is a version
of LFW after alignment using commercial face alignment
software. We gathered the subjects which have no less than
eleven samples and then formed a dataset with 136 subjects
from LFW-a. Each face image is firstly cropped to 102⇥120
and then resized to 32⇥32 images. We select 9 face images
per subject for training and use the remaining face images for
testing.

The experimental results are shown in Table 5. DSRIC has
the highest recognition accuracy. Since there are 158 subject
and the feature dimension is 1024, DSRIC does not show ad-
vantages in memory in this experiment.

4.5 Gender classification
In this section, a non-occluded subset (14 images per subject)
of the AR dataset is used. It includes face images of 50 male
and 50 female subjects. The images from the first 25 males

Table 5: Recognition rate, testing time and testing memory
on LFW database

Method NNC SRC NSC NCH NAH CRC CROC DSRIC
Accuracy 20.1 60.4 37.8 34.5 37.7 58.8 60.0 60.8

Time 14.7 25 0.55 80.2 107.9 0.77 1.28 1
Memory 0.009 0.009 0.018 0.009 0.009 0.018 0.026 1

and 25 females are used for training and the remaining for
testing. Following the experiment setting in [Zhang et al.,
2011], each face image is cropped to 60⇥43 and PCA is used
to reduce the feature dimension to 50. The classification ac-
curacy, testing time and testing memory are given in Table 6.
One can see that DSRIC achieves the highest accuracy, and it
costs much less running time and memory than others.

Table 6: Classification accuracy, testing time and testing
memory on gender classification dataset.

Method NNC SRC NSC NCH NAH CRC CROC DSRIC
Accuracy 90.3 93.1 93.4 91.4 91.4 93.1 92.9 94.7

Time 1.4⇥104 8.4⇥103 44.4 2.5⇥105 3.6⇥105 41.1 92 1
Memory 7 7 14 7 7 14 21 1

5 Conclusions
In this paper we investigated the representation based classi-
fication problem from a ”feature oriented” perspective. Dif-
ferent from the existing representation based classifiers that
represent a sample as the linear combination of other sam-
ples, we explored to represent a feature by its relevant fea-
tures in the data, which we call self-representation. A self-
representation induced classifier (SRIC) was then proposed,
which learns a self-representation matrix per class and uses
these matrices for classification. The query sample is then
classified to the class with the minimal reconstruction error.
We proved that SRIC is equivalent to nearest subspace classi-
fier (NSC) with l2-norm regularization in terms of classifica-
tion decision. Furthermore, it can be shown that SRIC is es-
sentially the principal component analysis (PCA) with eigen-
value shrinkage. We then proposed a discriminative SRIC
(DSRIC) classifier, which not only minimizes the feature self-
representation residual of this class but represents little the
features of other classes. The time and space complexity of
DSRIC (except for the training memory) is invariant to the
number of training samples, which makes it very suitable for
large scale datasets with many training samples, e.g., USPS
and MNIST. Experimental results on different pattern recog-
nition tasks showed that DSRIC achieves comparable or su-
perior recognition rate to state-of-the-art representation based
classifiers, while it has higher efficiency and lower memory
consumption.
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