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Adaptive Sample-level Graph Combination for
Partial Multiview Clustering
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Abstract—Multiview clustering explores complementary infor-
mation among distinct views to enhance clustering performance
under the assumption that all samples have complete information
in all available views. However, this assumption does not hold in
many real applications, where the information of some samples in
one or more views may be missing, leading to partial multiview
clustering problems. In this case, significant performance de-
generation is usually observed. A collection of partial multiview
clustering algorithms has been proposed to address this issue
and most treat all different views equally during clustering.
In fact, because different views provide features collected from
different angles/feature spaces, they might play different roles
in the clustering process. With the diversity of different views
considered, in this study, a novel adaptive method is proposed
for partial multiview clustering by automatically adjusting the
contributions of different views. The samples are divided into
complete and incomplete sets, while a joint learning mechanism is
established to facilitate the connection between them and thereby
improve clustering performance. More specifically, the method
is characterized by a joint optimization model comprising two
terms. The first term mines the underlying cluster structure
from both complete and incomplete samples by adaptively
updating their importance in all available views. The second
term is designed to group all data with the aid of the cluster
structure modeled in the first term. These two terms seamlessly
integrate the complementary information among multiple views
and enhance the performance of partial multiview clustering.
Experimental results on real-world datasets illustrate the effec-
tiveness and efficiency of our proposed method.

Index Terms—Partial multiview clustering, graph combination,
adaptive weights.

I. INTRODUCTION

With the rapid advancement in data-collection techniques,
multiview data have become popular in various application-
s [36], [55]. As a new unsupervised method, multiview
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clustering has been demonstrated as promising for research
on the grouping structure of multiview data [2], [4], [46],
[26]. Despite the numerous studies on multiview data, critical
issues remain in real-world scenarios when some of the data
from some views are inaccessible. This causes most of the
existing methods to degenerate or even fail. This type of
dataset usually contains two types of samples: those with
complete information from all available views, and those with
information missing in some of the views, as shown in Fig.
1. In general, incomplete data make multiview clustering a
challenging problem. Even in some real applications, only the
incomplete data are available in the dataset, which further
complicates the clustering operation. In the literature, this
type of scenario is often referred to as multiview clustering
on partial[18], weakly-paired [17], incomplete [54], or semi-
paired [35] data.
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Fig. 1: Partial image-text dataset, which contains complete and
incomplete data.

Many examples exist of partial multiview clustering, where
data from different views are collected, processed, and stored
independently. For example, in social platforms such as Face-
book and Flickr, numerous digital images are uploaded to the
website, but only some of them are annotated by users.

To deal with the partial multiview clustering problem, a
series of approaches have been proposed in previous studies.
One of the most intuitive strategies is simply removing the
samples that have missing view information. This enables
any existing multiview clustering method to be applied to
the remaining samples with complete information. These
methods completely ignore data with partial views and fails
use all information available in the dataset. To address this
issue, various completion methods have been proposed to
fill the missing values based on certain predefined criteria.
Nevertheless, no guarantee exists in terms of the fidelity of
the information that has been added. In addition, multiple
kernel- or graph-based learning techniques have been utilized
to tackle multiview clustering from a different perspective.
However, these methods are often computational demanding.
Their poor efficiency limits their practical value in real-
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Fig. 2: Framework of the proposed method. A three-view dataset is considered as an example. To solve the partial multiview clustering
problem, we project all partial data, including complete and incomplete data, into a unified clustering framework.

world applications. More recently, latent subspace methods
have shown great promise in addressing the partial multiview
clustering problem. Unfortunately, most of these methods treat
all views equally during clustering, thus failing to consider the
distinct expressive ability of different views. More importantly,
the complete and incomplete data are often treated equally by
most of these existing methods, which is undesirable.

In fact, different views and samples likely offer unique
contributions to the partial multiview clustering task. Based on
the example previously mentioned, annotation tags of pictures
provided by users of social media are often quite brief and
fail to fully represent the content of images. This means
that more comprehensive information remains embedded in
images, and thus image features and annotation tags will
contribute differently to the clustering task. In addition, these
differences might also be sample specific, as some images are
assigned more detailed and meaningful tags. To tackle this
problem, Shao et al. [33] proposed assigning different weights
to partial samples and complete samples. Prior to performing
clustering, they fixed a scaler assigned to all complete samples
while setting another weighting factor for incomplete ones.
However, the degree of freedom allowed in the clustering
process was very limited, as the authors failed to consider
sample-specific contributions from different views. When the
image-text data in Fig. 1 is considered as an example, beyond
the different levels of importance between complete and in-
complete data, the first sample in a complete dataset cannot
provide clear semantics based on its visual content. However,
the corresponding tags are useful for identifying its cluster
(i.e., the annotation tags are more informative than the visual
content of the sample). By contrast, the visual content of a
second sample is more informative than the annotation tags.
Thus, a more reasonable approach is to establish a flexible
framework in which an independent weighting factor for each
view of each sample can be assigned and adjusted adaptively
in the clustering process.

Accordingly, we propose an adaptive sample-level graph
combination for partial multiview clustering (ASGC-PMVC)
to cluster partial multiview samples based on sample-specific
contributions from different views learned automatically (see
Fig. 2). Consider a three-view dataset as an example with
three views marked in green, red, and yellow, respectively.
Without loss of generality, the dataset contains both complete
and incomplete data with one or two missing views, as shown
in the upper-left box of Fig. 2. Different shapes indicate
data from different clusters, whereas the hollow and solid
shapes are incorporated to differentiate the complete and
incomplete samples. ASGC-PMVC is characterized by a joint
optimization model consisting of two terms. The first term
exploits the underlying cluster structure from the combined
graphs of the complete or incomplete samples by evaluating
the importance of each sample from each view. As shown
in Fig. 2, the lower-left box illustrates the graph combina-
tion process of the complete or incomplete data. In the left
purple box, the combined graph of complete samples can be
constructed by automatically determining the importance of
each view, where the weights of importance are marked under
the graph combination. For example, the weights of the first
sample in the three views are 0.1, 0.7, and 0.2, indicating
that the second view is more important than the other views.
Similarly, the combined graph of incomplete data is depicted
in the right yellow box. The second term groups the entire
partial multiview data within each view, which is illustrated
in the upper-right box of Fig. 2. Samples with information
loss in a view are not used in the clustering process of this
view. The relation between these two terms is interpenetrative,
interactive, and mutual-compensatory. We expect to obtain the
clustering result by jointly minimizing these two terms, as
shown in the lower right box. To summarize, the proposed
method has the following advantages:

• ASGC-PMVC automatically determines the importance
of each considered sample in each view and emphasizes
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the importance of complete data.
• ASGC-PMVC learns the common subspace with the

adaptive graph fusion, which can seamlessly integrate the
complementary and consistent information from multiple
views and enhance the clustering performance on partial
multiview data.

• ASGC-PMVC can be efficiently solved, where exper-
imental results on real-world datasets demonstrate the
superiority of ASGC-PMVC over the baselines.

The remainder of this paper is organized as follows. In
Section II, we briefly introduce and discuss several related
works. Section III and IV present the proposed model and cor-
responding optimization algorithm, respectively. Experimental
results are reported and discussed in Section V. Concluding
remarks are provided in Section VI.

II. RELATED WORK

In this section, we briefly review existing studies on partial
multiview clustering and adaptive weights learning for the
multiview clustering task.

A. Partial Multiview Clustering

Multiview clustering deals with data represented by features
from multiple domains and aims to enhance clustering perfor-
mance [2], [36], [53]. An ideal situation is one in which each
data sample has complete information in all views. However,
in many real applications, information loss in some views
may be inevitable. The existence of these partial views makes
multiview clustering a challenging task, and the potential
pitfalls of existing multiview clustering methods are expected.

Many different strategies have been proposed to handle the
partial multiview clustering problem. A very intuitive method
is to use complete data only, but this fails to utilize all the data.
In addition, this type of simple strategy cannot be applied
to the clustering of partial multiview samples, which are
often encountered in the testing stage. An alternative approach
is to complete the missing information based on certain
assumptions about the data distribution with the aid of filling
techniques. Some existing methods [33], [7], [21] simply fill
the missing information by averaging over all the samples.
These methods then learn the common representations for the
multiple views. However, estimation missing information itself
is a challenging task and these methods fail to obtain satis-
factory accuracy, particularly with heterogeneous real-world
datasets. More sophisticated algorithms have been proposed
to improve the quality of missing information completion.
Among them, Wang et al. [40] proposed exploring multi-view
data generation for the clustering task based on generative
adversarial networks [58], [30]. However, the reliability of the
completed information remains questionable and this approach
may also introduce noisy information into the data during
completion process, which may bias the clustering process.
The performance of these methods can further degrade when
datasets are handled that have a considerable amount of miss-
ing information [43]. Advanced kernel or graph-based algo-
rithms have also been developed to tackle the partial multiview
clustering problem [1], [10], [22], [32], [34], [39], [49], [59],

[44], [51], [3], [23], [42]. These methods usually set absence
rows and columns in kernels and graphs where information is
missing and adopt multiple kernel learning techniques on all
samples. Despite their promising performances, these methods
suffer from high computational complexity, especially when
dealing with large datasets [25].

Recently, some subspace learning methods have been pro-
posed for partial multiview clustering. For example, canonical
correlation analysis-based algorithms have been designed to
incorporate paired and unpaired data [14], [15], [24], [52],
[57] for a two-view problem. Eaton et al. [6] presented a
constrained propagation method with incomplete mapping.
However, their assumptions under multiple views, based on
which the constraints are established, do not always hold
true in real-world applications. Li and Chen [19] proposed
a shared Gaussian process latent variable model, which de-
fines the distribution in advance for a probabilistic graph-
ical model. Yang et al. [48] proposed learning a common
subspace representation based on sparse low-rank constraints
for multiview dimension reduction. In addition, joint matrix
factorization methods [20], [21], [31] have been adopted for
partial multiview clustering [18] and are further equipped
with must-link and cannot-link constraints [60] or other local
manifold regularizations [45], [29], [28], [54], [50], [11], [38],
[47], [56], [37], [43]. A common limitation of most of these
methods is that they treat all views and samples equally,
whereas different views of different samples may play distinct
roles in the clustering task. As previously mentioned, a more
reasonable method is to introduce a flexible sample-specific
weighting scheme to highlight the important information. In
the following section, we briefly review the existing weighting
schemes that have been successfully applied to multiview
clustering problems as well as their limitations. These have
motivated us to develop the proposed method.

B. Adaptive Weights Learning

Successful pioneer studies have been conducted to adopt
a weighting scheme in the multiview clustering process [27],
[12], [13]. However, an obvious limitation of these methods
is that they can deal only with complete multiview data and
fail to consider variations in importance at the sample level.
Furthermore, Shao et al. [33] proposed to treat complete and
incomplete samples differently for clustering. Unfortunately,
the weights for complete and incomplete samples are fixed
prior to clustering, and their method fails to facilitate sample-
specific weighting and realize adaptive weight adjustment for
optimal clustering performance.

To resolve these issues, we propose a partial multiview
clustering method. The method is designed to exploit a com-
mon latent space for multiview clustering. The importance of
different views for different samples in the proposed method
can be automatically updated during the learning process.

III. FRAMEWORK OF ADAPTIVE SAMPLE-LEVEL GRAPH
COMBINATION FOR PARTIAL MULTIVIEW CLUSTERING

Complete multiview data are often expensive and time-
consuming to obtain. Thus, we plan to cluster partial data
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containing considerable incomplete data. We first must list
some primary notations.

A. Primary Notations
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Fig. 3: The partial dataset is composed of (a) complete and (b)
incomplete parts. Note that n1 = 0 means that all samples suffer
from missing views, whereas n2 = 0 means that all samples have
complete views.

In the partial setup of M views, some view information
of N samples is missing. Thus, all samples can be divided
into two parts (i.e., complete and incomplete parts), as in-
dicated by purple and yellow boxes in Fig. 3, respectively.
Let X = {X1,X2} be the dataset. X1 denotes the set of n1

complete samples appearing in all views, where each sample
is represented as a set of feature vectors in each view (i.e., the
data matrix X

(m)
1 ∈ Rd(m)×n1 , where d(m) is the number of

features in the m-th view). X2 indicates the set of n2 samples
with missing views (i.e., the data matrix X

(m)
2 ∈ Rd(m)×n2 ).

If the j-th sample in the m-th view is available, then it is
represented by the corresponding d(m) features. Otherwise,
the m-th view of this sample is missing, which indicates that
the sample is not useful in this view, and the missing values
are set zeroes. Let X(m) = [X

(m)
1 X

(m)
2 ] ∈ Rd(m)×N , where

N = n1 + n2 denotes the total number of samples. We aim
to group N samples into k clusters.

To record the presence of variables in the m-th view, we
introduce a diagonal matrix W (m) ∈ RN×N for each view. If
(W (m))jj = 1, then the j-th sample is available in the m-th
view. If the j-th sample is missing (i.e., (W (m))jj = 0), then
this sample will be ignored. As the dataset has been divided
into complete and incomplete parts (X1 and X2), the diagonal
matrices of the corresponding samples are W

(m)
1 ∈ Rn1×n1

and W
(m)
2 ∈ Rn2×n2 . Because the samples in X1 are complete

in all views, W (m)
1 = In1 is an identity matrix for each view.

The primary notations are summarized in Table I.

B. Adaptive Sample-level Graph Combination for Complete
Data X1 and Incomplete Data X2

As the dataset has been divided into complete and in-
complete parts, adaptive sample-level graphs are constructed
based on these two parts. To represent the complete data X1

sufficiently from all views (note that these views may be
heterogeneous), we introduce a mapping function from the

original heterogeneous feature spaces into a similarity space.
Moreover, this mapping function is expected to character-
ize the importance of different samples in different views.
More specifically, for each view, a nearest-neighbor graph
G

(m)
1 ∈ Rn1×n1 for complete data X

(m)
1 can be constructed

by setting each complete sample as a vertex and the similarity
between two samples as an edge [8]. After obtaining M

nearest-neighbor graphs {G(m)
1 }Mm=1, one for each view, we

attempt to combine them to construct a graph by considering
the importance of each sample in each view.

Furthermore, a set of variables {λ(m)
1 }Mm=1 is introduced

to characterize the adaptive sample-level weights. Each λ
(m)
1

is an n1-dimensional vector, where (λ
(m)
1 )j indicates the

importance of the j-th complete sample in the m-th view.
In other words, each sample has M weights, and each
weight indicates the importance of the current sample in
the corresponding view. Without loss of generality, these M
weights for each sample are further required to be non-negative
and normalized. Accordingly, we combine the M graphs
by
∑M

m=1 diag(λ
(m)
1 )G

(m)
1 W

(m)
1 , where diag(λ

(m)
1 ) is the

diagonal matrix of λ
(m)
1 and W

(m)
1 is the diagonal matrix

indicating the available samples. To guarantee symmetry, we
set:

G1 =
1

2

M∑
m=1

(
diag(λ

(m)
1 )G

(m)
1 W

(m)
1 +W

(m)
1 G

(m)
1 diag(λ

(m)
1 )

)
(0 ≤ λ1

(m) ≤ 1, ∀m,
M∑

m=1

(λ
(m)
1 )j = 1, ∀j).

Note that for complete data, W (m)
1 is the identity matrix and

can be omitted. This graph combination strategy is called
ASGC.

Using the combined graph G1, we can mine the cluster
structure using different techniques such as spectral clustering,
non-negative matrix factorization (NMF), or Sym-NMF. As
Sym-NMF often outperforms other methods [16], identifica-
tion of the clustering structure from complete data can be
formulated as:

min
{λ(m)

1 }M
m=1,H1

∥∥G1 −H1
TH1

∥∥2
F

(1)

s.t. H1 ≥ 0, 0 ≤ λ1
(m) ≤ 1, ∀m,

M∑
m=1

(λ
(m)
1 )j = 1, ∀j.

H1 ∈ Rk×n1 is the desired cluster-sample matrix with k
clusters.

Similarly, the graph G2 is combined to represent incomplete
data X2 sufficiently from all views. Note that there are missing
views for the incomplete data; if (W

(m)
2 )jj = 0, which

indicates that the j-th sample is ignored in the m-th view, the
weight (λ(r)

2 )j will be set to zero. The graph G2 is constructed
by:

G2 =
1

2

M∑
m=1

(
diag(λ

(m)
2 )G

(m)
2 W

(m)
2 +W

(m)
2 G

(m)
2 diag(λ

(m)
2 )

)
(0 ≤ λ

(m)
2 ≤ 1,∀m,

M∑
m=1

(λ
(m)
2 )j = 1,∀j).
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TABLE I: Summary of notations

Notation Size Description
n1 Number of complete samples
n2 Number of incomplete samples
N Total number of samples N = n1 + n2

M Number of views
k Number of clusters

d(m) Dimension of features in the m-th view
X

(m)
1 d(m) × n1 Data matrix of complete samples in the m-th view

X
(m)
2 d(m) × n2 Data matrix of incomplete samples in the m-th view

X(m) d(m) ×N Data matrix of the m-th view consisting of X(m)
1 and X

(m)
2 , X(m) = [X

(m)
1 X

(m)
2 ]

W (m) N ×N A diagonal matrix, where (W (m))jj indicates the availability of the j-th sample in the m-th view
G

(m)
1 n1 × n1 Nearest neighbor graph constructed of complete data X

(m)
1 in the m-th view

G1 n1 × n1 Graph combined by G
(m)
1 in all M views

G
(m)
2 n2 × n2 Nearest neighbor graph constructed of incomplete data X

(m)
2 in the m-th view

G2 n2 × n2 Graph combined by G
(m)
2 in all M views

Z(m) d(m) × k Basis matrix of the m-th view
H1 k × n1 Latent representation of the complete data X1

H2 k × n2 Latent representation of the incomplete data X2

H k ×N H = [H1 H2]

Sym-NMF on the incomplete data can be formulated as:

min
{λ(m)

2 }M
m=1,H2

∥∥G2 −H2
TH2

∥∥2
F

(2)

s.t. H2 ≥ 0, 0 ≤ λ
(m)
2 ≤ 1, ∀m,

M∑
m=1

(λ
(m)
2 )j = 1, ∀j.

H2 ∈ Rk×n2 is the cluster indicator of X2.
Thus, (1) and (2) can be combined as∑2
i=1 αi

∥∥Gi −Hi
THi

∥∥2
F

to determine the clustering
structure Hi from complete data X1 and incomplete data X2,
where the parameter αi is used to balance the contribution of
complete and incomplete samples.

C. Proposed ASGC-PMVC Method

Each view contains samples with complete or incomplete
information (i.e., X(m) = [X

(m)
1 X

(m)
2 ]). To perform partial

multiview clustering on the available data {X(m)W (m)}Mm=1

with the aid of ASGC, the proposed ASGC-PMVC is formu-
lated as follows:

min
Θ

2∑
i=1

αi

∥∥Gi −Hi
THi

∥∥2
F

+

M∑
m=1

η(m)||(X(m) − Z(m)H)W (m)||2F (3)

s.t. Hi, Z
(m) ≥ 0, 0 ≤ λ

(m)
i ≤ 1, ∀i,m,

M∑
m=1

(λ
(m)
i )j = 1,∀i, j

where Θ = {{Z(m)}Mm=1, {{λi
(m)}Mm=1, Hi}2i=1} is the set of

desired variables and W (m) ∈ RN×N is the diagonal matrix
that ignores the missing samples in the m-th view. The first
term determines the clustering structure Hi according to the
adaptive strategy. The goal of the second term is to identify the
cluster structure H = [H1 H2] ∈ Rk×N of each view X(m)

with the available samples. To cluster the data of each view, we
introduce the NMF model to evaluate the loss between original
data X(m) and the reconstructed data Z(m)H of the available

samples in each view. Z(m) ∈ Rd(m)×k is the basis factor of
the m-th view. The cluster structure H1 of the complete data
can be used to guide the clustering process on the incomplete
data. Moreover, H2 obtained from the incomplete data can be
used to generate a better estimation of H1. In this case, the
complete and incomplete data can be sufficiently integrated
to achieve a better clustering result. The different views share
a common H = [H1 H2] to ensure consistency. The basis
factor Z(m) and the corresponding cluster indicator H enforce
all samples to be smoothly gathered in the clustering process.
The parameter η(m) can balance the contribution of different
views.

D. Analysis
The proposed framework can handle an extreme case with

no complete samples (i.e., n1 = 0). In this case, the first term
in the proposed model (3) is reduced to

∥∥G2 −H2
TH2

∥∥2
F

. If
n2 = 0, which indicates that all the samples have complete
views, (3) is reduced to

∥∥G1 −H1
TH1

∥∥2
F

. In addition, the
second term in (3) can be flexibly and conveniently replaced
with other loss functions, such as the hinge, and logistic loss
functions.

The proposed method is different from the existing methods
in the following ways. 1) It can automatically learn the
adaptive sample-level weight λ(m)

i for each view to determine
the importance of each considered sample. 2) All the samples
are divided into complete and incomplete parts, and the
parameters α1 and α2 are used to balance the contribution
of complete and incomplete data, respectively. 3) η(m) is
introduced to represent the importance of each view, and its
value can be set according to λ

(m)
i , which is illustrated in the

experiments described in Sections V.D and V.E. 4) It learns
the common subspace with the adaptive graph fusion and can
then seamlessly integrate the complementary and consistent
information from multiple views for partial multiview data.

IV. OPTIMIZATION ALGORITHM

To address the joint nonconvex optimization problem of
ASGC-PMVC, we utilize a numerical scheme to alternately
update each of the variables by fixing the others.
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More specifically, (3) can be rewritten as:

min
Θ

2∑
i=1

αi

∥∥∥∥∥12
M∑

m=1

(
W

(m)
i G

(m)
i Λ

(m)
i + Λ

(m)
i Gi

(m)W
(m)
i

)
−Hi

THi

∥∥2
F
+

M∑
m=1

η(m)||(X(m) − Z(m)H)W (m)||2F (4)

s.t. Z(m),Hi ≥ 0, 0 ≤ Λ
(m)
i ≤ 1, ∀m,

M∑
m=1

Λ
(m)
i = Ii, ∀i

where Λ
(m)
i = diag(λ

(m)
i ) and Ii ∈ Rni×ni is an identity ma-

trix. To solve the constraints in (4), we consider its augmented
Lagrangian function O, which can be derived as:

O ≡
2∑

i=1

αi

(∥∥∥∥12 ĜiΛ̂i +
1

2
Yi − JT

i Hi

∥∥∥∥2
F

+βi||Ji −Hi||2F + 2 < Γi, Ji −Hi >

+γi||EiΛ̂i − Ii||2F + 2 < Ψi, EiΛ̂i − Ii > (5)

+θi||Λ̂T
i Ĝ

T
i − Yi||2F + 2 < Φi, Λ̂

T
i Ĝ

T
i − Yi >

+{δ+(Λ̂(m)
i )}Mm=1 + δ+(Hi)

)
+

M∑
m=1

(
η(m)||(X(m) − Z(m)H)W (m)||2F + δ+(Z

(m))
)

where Yi and Ji are auxiliary variables to fit Λ̂T
i Ĝ

T
i

and Hi, respectively. βi, γi, θi > 0 are the penal-
ty parameters, and Γi,Ψi,Φi are the Lagrange mul-
tipliers. To optimize all {Λ(m)

i }Mm=1 together, we set
Ĝ =

[
(W

(1)
i G

(1)
i ) (W

(2)
i G

(2)
i ) · · · (W (M)

i G
(M)
i )

]
, Λ̂ =

Λ
(1)
i

Λ
(2)
i

· · ·
Λ
(M)
i

, Ei = [Ii Ii · · · Ii]. δ+ represents the delta func-

tion that provides +∞ to the negative values. This guarantees
the non-negativity of the optimal solution because the presence
of negative element leads to an infinitely large objective
function value.

A. Minimizing O over Λ̂i

Given (Hi)
τ , (Ji)

τ
, (Yi)

τ
, (Ψi)

τ , (Φi)
τ (τ is the iteration

number), Λ̂i can be solved by optimizing the following prob-
lem:

min
Λ̂i

O
(
Λ̂i

)
≡
∥∥∥∥12 ĜiΛ̂i +

1

2
(Yi)

τ − (Jτ
i )

T
(Hi)

τ

∥∥∥∥2
F

+ γi||EiΛ̂i − Ii||2F + 2 < (Ψi)
τ , EiΛ̂i − Ii >

+ θi

∥∥∥Λ̂T
i Ĝ

T
i − (Yi)

τ
∥∥∥2
F
+ δ+

(
Λ̂i

)
+ 2 < (Φi)

τ , Λ̂T
i Ĝ

T
i − (Yi)

τ > (6)

The updating rule is:

(Λ̂i)
τ+1/2 :=

(
(
1

2
+ 2θi)Ĝ

T
i Ĝi + 2γiE

T
i Ei

)−1

(
ĜT

i

(
− 1

2
(Yi)

τ + 2θi((Yi)
τ )T

+((Ji)
τ )

T
(Hi)

τ − 2 ((Φi)
τ )

T )
+2γiE

T
i − 2ET

i (Ψi)
τ
)

(Λ̂i)
τ+1 := Proj((Λ̂i)

τ+1)+ (7)

where Proj((Λ̂i)
τ+1)+ indicates that if (Λ̂i)

τ+1 < 0, then
set (Λ̂i)

τ+1 = 0.

B. Minimizing O over Yi

Given (Λ̂i)
τ+1, (Hi)

τ , (Ji)
τ , (Φi)

τ , Yi can be solved by
optimizing the following problem:

min
Yi

O (Yi) ≡
∥∥∥∥12 Ĝi(Λ̂i)

τ+1 +
1

2
Yi − ((Ji)

τ )
T
(Hi)

τ

∥∥∥∥2
F

+ θi||((Λ̂i)
τ+1)T ĜT

i − Yi||2F
+ 2 < (Φi)

τ , ((Λ̂i)
τ+1)T ĜT

i − Yi > (8)

By setting the gradient of O (Yi) to zero, we obtain the new
Yi as follows:

(Yi)
τ+1 :=

(
1/(

1

2
+ 2θi)

)(
−1

2
Ĝi(Λ̂i)

τ+1 + 2(Φi)
τ

+((Ji)
τ )T (Hi)

τ + 2θi((Λ̂i)
τ+1)T ĜT

i

)
(9)

C. Minimizing O over Ji

Given (Λ̂i)
τ+1, (Yi)

τ+1, (Hi)
τ , (Γi)

τ , Ji can be solved by
optimizing the following problem:

min
Ji

O(Ji) ≡ βi||Ji − (Hi)
τ ||2F + 2 < (Γi)

τ , Ji − (Hi)
τ >

+

∥∥∥∥((Hi)
τ )TJi −

1

2
((Yi)

τ+1)T − 1

2
((Λ̂i)

τ+1)T ĜT
i

∥∥∥∥2
F

(10)

We directly obtain its gradient, and the updating rule is:

(Ji)
τ+1 :=

(
2(Hi)

τ ((Hi)
τ )T + 2βiIk

)−1(
(Hi)

τ ((Yi)
τ+1)T + (Hi)

τ ((Λ̂i)
τ+1)T ĜT

i

+ 2βi(Hi)
τ − 2(Γi)

τ
)

(11)

where Ik ∈ Rk×k.

D. Minimizing O over Hi

Given (Λ̂i)
τ+1, (Ji)

τ+1, (Yi)
τ+1, (Γi)

τ , (Z(m))τ for each
view, Hi can be solved by optimizing the following problem:

min
Hi

O(Hi) ≡ αi

(
||Ai − ((Ji)

τ+1)THi||2F + βi||(Ji)τ+1 −Hi||2F

+2 < (Γi)
τ , (Ji)

τ+1 −Hi > +δ+(Hi)
)

+
M∑

m=1

η(m)||(Xi
(m) − (Z(m))τHi)W

(m)||2F (12)

where Ai =
1
2 Ĝi(Λ̂i)

τ+1 + 1
2 (Yi)

τ+1. Hi can be updated as:
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(Hi)
τ+1/2 :=

(
αi

(
(Ji)

τ+1((Ji)
τ+1)T + βiIk

)
+

M∑
m=1

η(m)((Z(m))τ )T (Z(m))τ

)−1

(
M∑

m=1

η(m)((Z(m))τ )TXi
(m)W (m)

+ αi

(
(Ji)

τ+1Ai + βi(Ji)
τ+1 + (Γi)

τ
))

(Hi)
τ+1 := Proj((Hi)

τ+1)+ (13)

E. Updating Γi, Ψi and Φi

(Γi)
τ+1 := (Γi)

τ + βi((Ji)
τ+1 − (Hi)

τ+1)

(Ψi)
τ+1 := (Ψi)

τ + γi

(
Ei(Λ̂)

τ+1 − Ii

)
(14)

(Φi)
τ+1 := (Φi)

τ + θi

(
((Λ̂i)

τ+1)T ĜT
i − (Yi)

τ+1)
)

F. Minimizing O over Z(m)

Given (H)τ+1 = [(H1)
τ+1(H2)

τ+1], the computations of
{Z(m)}Mm=1 for each view do not depend on each other.
Therefore, (5) is reduced to:

min
Z(m)

O(Z(m)) ≡ η(m)||(X(m) − Z(m)(H)τ+1)W (m)||2F

+δ+(Z
(m)) (15)

It can be solved as follows:

(Z(m))τ+1/2 := X(m)W (m)((H)τ+1)T(
(H)τ+1W (m)((H)τ+1)T

)−1

(Z(m))τ+1 := Proj
(
(Z(m))τ+1/2

)
+

(16)

Note that the computations of Z(m) for each view do not
depend on each other, and the computations for all M views
can be run in parallel.

The overall process of ASGC-PMVC is described in Algo-
rithm 1.

G. Convergence Analysis

The proposed ASGC-PMVC is nonconvex. However, its
convergence to a stationary point can still be established. For
the model in (4), the proposed algorithm tackles the optimiza-
tion problem in an alternative manner. More specifically, we
solve one of {Λ̂i,Hi}2i=1 and {Z(m)}Mm=1, while fixing the
others. It can be demonstrated that the value of the objective
function decreases if the minimization problem with respect
to each individual variable can be solved properly.

To tackle the subproblem of Λ̂i, which is a constrained con-
vex optimization problem, we utilize the alternating direction

Algorithm 1: ASGC-PMVC

Input : Data matrix of the m-th view {X(m)}Mm=1,
diagonal matrix {W (m)}Mm=1, where W

(m)
jj

indicates the availability of j-th sample in the
m-th view, parameters {αi}2i=1 and {η(m)}Mm=1.

Output: Clustering results.
Construct nearest-neighbor graphs {G(m)

1 }Mm=1 and
{G(m)

2 }Mm=1.
repeat

for i = 1 : 2 do
Update Λ̂i via (7).
Update Yi via (9).
Update Ji via (11).
Update Hi via (13).
Update Γi, Ψi and Φi via (14).

end
Update H = [H1 H2].
for m = 1 : M do

Update Z(m) via (16).
end

until convergence;
Obtain clustering results of the new representation H .
return

method of multipliers (ADMM). The following corresponding
augmented Lagrangian function is considered at each step:∥∥∥∥12 ĜiΛ̂i +

1

2
Yi − ((Hi)

τ )T (Hi)
τ

∥∥∥∥2
F

+ζi

∥∥∥∥[ Ei

Ĝi

]
Λ̂i −

[
Ii
Y T
i

]∥∥∥∥2
F

+2
⟨ [ Ψi

ΦT
i

]
,

[
Ei

Ĝi

]
Λ̂−

[
Ii
Y T
i

] ⟩
+ δ+(Λ),(17)

where Yi is an auxiliary variable and ζi is a parameter obtained
by combining γi and θi. The global convergence of ADMM
on a convex optimization problem is well established. Let F
denote the objective function given in (17). We can then obtain
the following inequality:

F
(
(Λ̂i)

τ+1, (Hi)
τ , {(Z(m))τ}Mm=1

)
≤ F

(
Λ̂i, (Hi)

τ , {(Z(m))τ}Mm=1

)
. (18)

The subproblem with respect to Hi is nonconvex. However,
we can still use ADMM to split the problem by introducing
auxiliary variables Ji, and we can formulate the corresponding
augmented Lagrangian as:

αi

∥∥∥∥12 Ĝi(Λ̂i)
τ+1 +

1

2
(Λ̂i)

τ+1Ĝi − JT
i Hi

∥∥∥∥2
F

+
M∑

m=1

η(m)
∥∥∥(Xi

(m) − (Z(m))τ (Hi)
τ
)
W (m)

∥∥∥2
F

+βi||Ji −Hi||2F + 2 < Γi, Ji −Hi > +δ+(Hi) (19)

Based on [9] [41], ADMM promises convergence to one of
its stationary points. Thus, we have:
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F
(
(Λ̂i)

τ+1, (Hi)
τ+1, {(Z(m))τ}Mm=1

)
≤ F

(
(Λ̂i)

τ+1,Hi, {(Z(m))τ}Mm=1

)
. (20)

The subproblem of Z(m) is convex and can be easily solved
by seeking solutions to linear systems, as given in (16). Thus,
we have:

F
(
(Λ̂i)

τ+1, (Hi)
τ+1, {(Z(m))τ+1}Mm=1

)
≤ F

(
(Λ̂i)

τ+1, (Hi)
τ+1, {Z(m)}Mm=1

)
. (21)

Overall, by iteratively solving Λ̂i, Hi and {Z(m)}Mm=1 using
the scheme previously mentioned, the value of the objective
function should monotonically decrease. Furthermore, as the
objective function is bounded below, the proposed algorithm
converges to a stationary point.

To reduce the overall computational complexity, we update
Λ̂i and Hi according to the ADMM scheme only once at each
iteration, which is equivalent to directly handling the combined
augmented Lagrangian function, as follows:

αi

∥∥∥∥12 ĜiΛi +
1

2
Yi − JT

i Hi

∥∥∥∥2
F

+

M∑
m=1

η(m)
∥∥∥(X(m) − (Z(m))τH

)
W (m)

∥∥∥2
F

+βi||Ji −Hi||2F + 2 < Γi, Ji −Hi > (22)

+ζi

∥∥∥∥[ Ei

Ĝi

]
Λ̂i −

[
Ii
Y T
i

]∥∥∥∥2
F

+2
⟨[ Ψi

ΦT
i

]
,

[
Ei

Ĝi

]
Λ̂i −

[
Ii
Y T
i

]⟩
+ δ+(Λ̂i) + δ+(Hi)

In addition, we can further relax the problem so that the
penalty parameters of the two constraints with respect to Λ̂i

can be different. We observed that the algorithm is convergent
for all tested datasets.

H. Computational Complexity

In this section, we consider the computational cost of
ASGC-PMVC. In (7), we calculate the inverse of ((12 +

2θi)Ĝ
T
i Ĝi + 2γiE

T
i Ei) with O(Mni)

3 complexity. As the
inverse is fixed throughout the ADMM iterations, computing
the inverse in advance is sufficient . The complexities of the
inverse in (11), (13), and (16) are all O(k3). As the number of
clusters k is usually very small, the inverse is not the dominant
cost. k is always smaller than ni, and thus the costs of updating
Λ̂i, Yi, Ji, Ψi, and Φi are all O(Mni

3). The costs of updating
Z(m), Hi, and Γi are O(kd(m)n(m)), O(max(kd(m)ni, kn

2
i )),

and O(kni), respectively, where n(m) is the number of
samples without missing values in the m-th view. Overall,
the computational cost of ASGC-PMVC for each iteration
is O

(
max{Mni

3}2i=1 +max({kd(m)n(m)}Mm=1, {kn2
i }2i=1)

)
.

Note that ni is the number of complete or incomplete samples
represented with all views, and n(m) is the number of samples
represented in the m-th view; they are less than the number
of all samples (N ). Moreover, the update of Λ̂i, Ji, Yi,Hi for

the complete or incomplete parts can be run simultaneously,
and Z(m) of different views can be updated in parallel because
they are independent of each other in the optimization process.
Thus, the complexities are not very high.

V. EXPERIMENTAL RESULTS

A series of experiments was conducted to validate the
performance of the proposed models.

A. Synthetic Experiment

To better understand the idea behind the combination of
graphs on the complete data, we conducted an experiment
on synthetic data. As shown in Fig. 4, 400 samples were
represented in two views, and all the samples originated from
four clusters, which are marked in the figure by different
shapes. The number of complete and incomplete samples
was 200 each, and they are illustrated by the hollow and
solid shapes, respectively. Furthermore, 120 and the other 80
incomplete samples are represented in the first and second
views, respectively. All the data were distributed in 2D space,
and were generated by Gaussian distributions with different
means and covariance matrices.
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y
(b)

Fig. 4: Synthetic data in (a) View1 and (b) View2. The samples with
the same shape belong to the same cluster.

In Fig. 4(a), some samples in the first view originating from
the circle and triangle clusters have good separation, whereas
the square and diamond data are not well separated. However,
the distribution of data in the second view in Fig. 4(b) is in
contrast to that in Fig. 4(a). As only two views existed in this
dataset, if the j-th incomplete sample appeared in the first
view, then its weight (λ(1)

2 )j = 1 and (λ
(2)
2 )j = 0. Thus, the

weight of each incomplete sample did not need to be learned,
and we only had to learn the weights of the complete samples.

0 50 100 150 200
Complete data ID

0

0.2

0.4

0.6

0.8

1

λ
1(1

)

Fig. 6: Weights of the first view (λ(1)
1 ) of each complete data for

synthetic data.
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Fig. 5: Graph constructed using the complete data (a) G(1)
1 , (b) G(2)

1 , (c) G1.

The corresponding graphs G
(1)
1 and G

(2)
1 constructed using

the completed data are illustrated in Fig. 5 (a) and (b). As the
first 100 samples were well clustered in the first view, their
weights should be greater than those of the other samples.
The weights learned by ASGC are shown in Fig. 6. Nearly
all the weights λ

(1)
1 of the first 100 samples were greater

than 0.5 (i.e., the weights λ
(2)
1 are less than 0.5). This was

consistent with the expectation. The combined graph G1 is
shown in Fig. 5 (c), where we can observe that the data with
the same label are aligned well. Thus, data of the same shape
are grouped together. The new representations learned by Sym-
NMF on view1, view2, and ASGC are illustrated in Fig. 7.
We can observe that the samples were well clustered using
the proposed method. Note that the mean values of λ

(1)
1 and

λ
(2)
1 were 0.5016 and 0.4984, respectively, and they express

the importance of the first and second views; thus, they can
be used as the parameters η1 and η2, respectively.

Therefore, the ASGC can be used to combine data from
multiple views with different weights for different samples.
This demonstrates the effectiveness of the graph combination,
and it can be further applied to deal with partial data.

B. Real-world Datasets

The proposed ASGC-PMVC was tested on the following
four real-world datasets:

(i) BDGP1 is a two-view dataset. It contains 2,500 images
of drosophila embryos belonging to five categories. Each
image is represented by a 1,750-D visual vector and a
79-D text vector for visual and text view, respectively.

(ii) NUS-WIDE2 is also a two-view dataset selected from
Flickr that includes 8,500 samples belonging to five
categories (bird, food, sun, tower, and toy). Five hundred
visual words and 1,000 tags were used to build the image
and text feature spaces, respectively.

(iii) Kitti3 is an autonomous driving platform containing five
driving scenarios (city, residential, road, campus, and
person). We selected 10,055 samples with two views:
1,024-D BOW features and 4,096-D VGG deep features.

1http://ranger.uta.edu/%7eheng/Drosophila/
2http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
3http://www.cvlibs.net/datasets/kitti/raw data.php

(iv) COIL-204 is the Columbia Object Image Library dataset
having 1,440 images belonging to 20 categories. Each
category contains 72 images. Three types of features
are used to represent the object: 3,304-D LBP, 1,024-D
intensity, and 6,750-D Gabor feature spaces.

To simulate the partial view setting, we randomly selected
some samples from each view to make the views incomplete.
Three criteria were used to describe the missing situation.

(i) Partial view ratio (PVR) is the fraction
of partial views of all samples (i.e.,
PVR=1−

∑M
m=1

∑N
j=1(W

(m))jj/(M ∗N)).
(ii) Partial sample ratio (PSR) is the fraction of incomplete

samples (i.e., PSR=n2/N ).
(iii) PSR of each view (PSRV) is the fraction of partial

samples in a given view (i.e., PSRV for the m-th view
is 1−

∑N
j=1(W

(m))jj/N ).
In the incomplete dataset, when the values of PVR, P-
SR, and PSRV were higher, the number of missing sam-
ples was greater. When a three-view dataset was considered
as an example, there were 600 samples, where 500 sam-
ples had incomplete views, and thus PSR=500/600=83%. In
the 500 incomplete samples, 200 samples had one missing
view, and 300 samples had two missing views, and thus
PVR=(200+300*2)/(600*3)=44%. If the first view of the 400
samples was missing, PSRV1=400/600=66%.

We tested three situations to perform a comprehensive
test. The first situation considered the most general case in
which information loss occurred in a purely random fashion.
Different PVR values were simulated in the experiments to
test the capability of the proposed framework when dealing
with various levels of incompleteness. The second partial-
view situation was to randomly select a small fraction of
data as complete samples appearing in all views, whereas the
remaining data were incomplete samples. To simplify the as-
signment of incomplete samples to their corresponding views,
we evenly distributed them to all views in the experiment
according to [18]. For the third situation, we randomly selected
some complete samples, and the other views suffered from
missing cases. The numbers of incomplete samples in different
views were changed. Thus, PSR was fixed, whereas PSRV was
varied. Each process was repeated 10 times, and the average

4http://www.cs.columbia.edu/CAVE/software/softlib/
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Fig. 7: New representations learned on (a) G(1)
1 , (b) G(2)

1 , (c) G1.

result was recorded.

C. Methodology

The proposed ASGC-PMVC models were compared with
the following baselines.

(i) NMF was performed on partial multiview data. Accord-
ing to [33], the missing data were filled with the average
feature values. The coefficient factor was considered as
the cluster indicator, and the best result for all views is
listed.

(ii) GMultiNMF seeks the common latent subspace from the
complete data using the joint NMF model [20], which
combines Multiview NMF and graph constraints.

(iii) OMVC is an online multiview clustering algorithm with
a joint weighted NMF model that deals with large-scale
incomplete views [31].

(iv) PVC establishes the latent subspace with incomplete
two-view data [18] but is useful only for two-view data.

(v) GPMVC extends PVC for partial multiview data and
introduces the view-specific graph Laplacian regulariza-
tion in the model [29].

(vi) MVL-IV seeks a common latent subspace by allowing
the incomplete data to be restored with the help of
complete data [45].

(vii) MIC learns the latent feature representation by integrat-
ing the weighted NMF and L2,1 regularization [33].

(viii) IMG preserves the compact global structure over the en-
tire heterogeneous data by introducing a graph Laplacian
term to couple the incomplete samples [54].

(ix) USL handles incomplete and unlabeled multiview data
using a subspace learning framework, which incorpo-
rates L2,1 and graph Laplacian regularizations [50].

(x) DAIMC is a doubly aligned incomplete multiview clus-
tering algorithm based on weighted semi-NMF with the
help of regression [11].

(xi) DIMC projects all data to a common subspace using
a deep incomplete multiview clustering model, which
incorporates the constraint of the intrinsic geometric
structure [56].

Six widely used metrics were adopted to evaluate the
clustering performances: accuracy (ACC), normalized mutual
information (NMI), adjusted Rand index (AR), F-score, pre-
cision, and recall [18], [47], [54], [42], [53], [5]. Each metric
illustrates a specific aspect of the clustering result. To compute
ACC, each cluster is assigned to the class that is most frequent

in the cluster, and then the accuracy of this assignment is mea-
sured by counting the number of correctly assigned samples
and dividing by N . NMI determines the amount of statistical
information shared by the random variables representing the
cluster assignments and user-labeled class assignments of
the data points. AR penalizes both false positive and false
negative decisions during clustering. F-score supports differ-
ential weighting of these two types of errors. Recall measures
the fraction of positive examples that are correctly labeled,
whereas precision measures that fraction of examples classified
as positive that are truly positive. For all these metrics, a higher
value indicates better clustering performance. Each metric
penalizes or favors different properties in the clustering, and
thus we report results on these diverse measures to perform
a comprehensive evaluation. These metrics are widely used
for evaluating multiview clustering performance with complete
or incomplete views. For example, in the compared methods,
PVC [18] and USL [50] use NMI to evaluate the clustering
performance, and IMG [54] adopts NMI and precision.

D. Adaptive Sample-level Weights

The BDGP dataset was chosen to illustrate the performance
of the adaptive sample-level weights learned by the proposed
model. BDGP consists of image features and annotation terms.
We randomly selected 10% as the complete image-text pairs
(i.e., the number of samples in X1 was 250 (50 samples for
each cluster)), and the numbers of partial images and texts
were both 1,125. As BDGP is a two-view dataset, we needed
to learn only the adaptive weights of complete data. In this
subsection, the subscript 1 in X,G, λ, which represents the
complete part, is omitted for clear representation.
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Fig. 8: Weight (λ(1)) of each complete sample in the first view on
the BDGP dataset.

Fig. 8 shows the weight (λ(1)) of each complete sample
(X) in the image view. A higher value indicates that the
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Fig. 9: Clustering results of complete image and text samples on the
BDGP dataset

clustering process utilized much more image information than
text information for the corresponding sample. It could be
observed that different samples contributed differently to the
clustering task. Moreover, all the weights of image views were
less than 0.5, indicating that the text view (X(2)) played a more
important role than did image view (X(1)). The clustering
results on the complete multiview data (X(1)) and (X(2))
obtained using Sym-NMF [16] are listed in Fig. 9. In addition,
it could be observed that the clustering results on the text view
were superior to those on the image view. This result further
confirms that the learned sample-level weights are reasonable
(i.e., λ(1)

i < λ
(2)
i for all samples).
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(a) Graph information for the 90-th sample
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(b) Graph information for the 132-th sample

Fig. 10: Parts of graphs constructed with the complete data on the
BDGP dataset, (a) Lines 1–3 are G

(1)

(90,:), G
(2)

(90,:), and G(90,:), respec-
tively. (b) Lines 1–3 are G

(1)

(132,:), G
(2)

(132,:), and G(132,:), respectively.

To investigate the sample-level weights, we checked two
typical samples marked by a green square and red circle
in Fig. 8. The green square indicates the 90-th complete
sample with λ

(1)
90 = 0 and λ

(2)
90 = 1, which demonstrates

that the text graph (G(2)) is sufficiently clear to illustrate
the cluster structure of this sample. Fig. 10(a) shows the
corresponding graph information of G(1), G(2), and G
related to the 90-th sample. The red dash lines are used to
separate the samples from different clusters. Accordingly, we
can conclude that the 90-th sample belongs to the second
cluster. It is evident that the samples having higher similarity
with the 90-th sample originated from the second cluster
according to G(2), whereas they originated from three clusters
(Clusters 2–4) according to G(1). The 90-th sample has
vague image representation and clear semantic terms. The
third line of Fig. 10(a) illustrates the result of G(90,:) =
1
2

(
(
∑2

m=1 diag(λ
(m))G(m) +G(m)diag(λ(m)))

)
(90,:)

=

G
(2)
(90,:). As λ

(1)
90 = 0, the second and third lines are

identical, indicating that less image information and more
text information were used in the learning process.

Similarly, the maximal value of λ(1) was 0.43 (i.e., the 132-
th sample marked by the red circle in Fig. 8, and thus λ

(2)
132

was 1-0.43=0.57. The 132-th sample belongs to Cluster 3,
and the neighbors of G

(1)
(132,:) (shown in the first line of Fig.

10(b)) originated from Clusters 2–4, whereas the neighbors of
G

(2)
(132,:) (shown in the second line of Fig. 10(b)) originated

from Clusters 2–3, and most of them are related to the
right Cluster 3. Although both image and text views have
comparable representations, the text view is clearer than the
image view. Thus, λ(1)

132=0.43 and λ
(2)
132=0.57 are reasonable.

The result of G(132,:) is illustrated in the third line of Fig.
10(b). It is evident that the 132-th sample has a better similarity
to the samples belonging to the third cluster than to the points
in the other clusters. As λ(m) indicates the importance of each
sample in the m-th view, we use its average value to set the
parameter η(m) in (3) (i.e., η(m) = 1

n1

∑n1

i=1 λ
(m)
i ). In this

experiment, η(1) = 0.2021 and η(2) = 0.7979.

E. Effect of trade-off parameters
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Fig. 11: Effect of different trade-off parameters η(1) and α1 of ASGC-
PMVC with PSR 90% on the BDGP dataset.

In the proposed model (3), some parameters exist, namely,
trade-off controller {αi}2i=1 and {η(m)}Mm=1. In our exper-
iment, we set

∑
i αi = 1 and

∑
m η(m) = 1. To test the

effects of the parameters, we took the BDGP dataset with PSR
90% as an example, which contained 250 complete pairs and
2,250 incomplete data. We manually adjusted different values
of η(1) and α1, where the NMI values are shown in Fig. 11.
Of the two parameters, η(m) indicates the importance of the
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m-th view. We can see that the best clustering performance
was obtained when η(1) = 0.2, which is basically consistent
with the value computed by λ(m) introduced in the previous
subsection (η(1) = 0.2021). Thus, it verifies that the average
value of λ(m) could be used as the value of η(m) to replace
the manual adjustment was verified.

High values of α1 and α2 indicate that complete and
incomplete data play critical roles in the clustering process,
respectively. Fig. 11 reveals that good clustering performance
was obtained when the trade-off parameter α1 was in the
range of [0.7, 0.9] and α2 was in the range of [0.1, 0.3],
This confirms that the complete information was more helpful
to the clustering task, and it is reasonable to build a bridge
between different views for migrating the useful knowledge.

F. Convergence Study
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Fig. 12: Convergence curves of the value of the objective function
and the corresponding NMI value vs. the number of iterations of
ASGC-PMVC with PSR 99% on the BDGP dataset.

We discussed the convergence of the proposed ASGC-
PMVC methods in the previous section. In this section, we
describe our attempt to numerically evaluate the convergence
on the BDGP dataset. The value of the objective function and
corresponding NMI value in each iteration are shown in Fig.
12 with PSR 99% for ASGC-PMVC. It can be observed that
the value of the objective function monotonically decreased
with the increase in the number of iterations. Moreover, the
clustering process converged in a few iterations under this
setup, which was sufficient to generate good clustering results.

G. Clustering Results with Different Settings

This subsection details the clustering results under compre-
hensive experimental setups characterized by different PVRs,
PSRs, and PSRVs to account for a wide range of information-
loss scenarios in real applications.

1) Clustering results with different PVR values: We first
investigated the performance of the proposed method under
different PVRs on different datasets and compared the results
with the state-of-the-art methods. Note that the PVR value
for a two-view dataset could not exceed 50% to ensure each
sample had at least one view available in the dataset. Thus,
we considered PVRs from 10% to 40% with an interval of
10%.

All results are listed in Table II. BDGP is a balanced dataset
with 500 samples in each category. The Kitti dataset contains
10,055 complete samples with both BOW and VGG views.

It is an unbalanced dataset, which made the clustering task
more challenging. The numbers of “campus,” “city,” “person,”
“resident,” and “road” are 1,409, 2,612, 1,768, 2,084, and
2,182, respectively. For the three-view COIL-20 dataset, the
number of samples in each cluster is small, which made
the clustering task more difficult. Note that PVC and IMG
can only be used for two-view data. Therefore, we did not
test them on the three-view multiview dataset. The proposed
ASGC strategy can make the learned new representation H1

more precise and is helpful for obtaining the basis factor Z and
for representing H2. As expected, the performance of ASGC-
PMVC was better than those of the compared methods.

2) Clustering results with different PSR values: In this
experiment, we randomly selected a small fraction of data as
complete samples (i.e., they appeared in all views, whereas
the others were incomplete samples). As the difference of
PSR and PVR cannot be reflected on two-view datasets, we
focused on the three-view COIL dataset. Although both PVR
and PSRV were fixed at 30%, the PSR was set to range from
50% to 90% with a step of 10%. For a concise presentation,
we used NMI as the evaluation criteria in this experiment. Fig.
13 shows the NMI results on the COIL dataset for different
testing algorithms when the PSR values were varied. It can
be observed that when PSR increased, the performance of all
the methods diminished, which indicates the importance of
complete samples in terms of learning precise representations.
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Fig. 13: NMI results for varied PSR values (%) on the COIL dataset.

It could be concluded that most of the multiview learning
methods always outperformed the single-view method (NMF),
which is consistent with our expectation that multiview data
are more informative than single-view data. As GMultiNMF
seeks the common latent subspace by considering only a small
portion of complete data, it failed to achieve a satisfactory
result. The proposed method consistently outperformed all
the baselines and achieved promising clustering results. It
also benefited from the highlight of informative views of
each sample. Note that all the views and samples in the
compared methods were treated equally, although different
samples in different views may have contributed differently to
the clustering process. This may be the primary reason for the
higher clustering accuracy achieved by the proposed ASGC-
PMVC models.

3) Clustering results with different PSRV values: Finally,
we illustrate the clustering performance under different PSRV
in each view with a fixed PVR of 30% and PSR of 90%. To
be consistent, we also considered a three-view COIL dataset
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TABLE II: Clustering results with different PVR values (%)

Dataset PVR Methods ACC NMI AR F-score Precision Recall PVR ACC NMI AR F-score Precision Recall
NMF 0.7312 0.6077 0.4635 0.5882 0.5052 0.7038 0.5701 0.4587 0.1897 0.4081 0.3023 0.6276

GMultiNMF 0.7612 0.7124 0.6745 0.7470 0.6699 0.8441 0.6808 0.5201 0.5050 0.6147 0.5538 0.6908
OMVC 0.7712 0.7223 0.6915 0.7634 0.6936 0.8428 0.7061 0.5867 0.5843 0.6306 0.5905 0.7122

PVC 0.9204 0.7778 0.8091 0.8526 0.8441 0.8523 0.8825 0.7010 0.7202 0.7837 0.7829 0.7821
GPMVC 0.9203 0.7887 0.8192 0.8485 0.8503 0.8535 0.8946 0.7107 0.7211 0.7926 0.7937 0.7807

10 MVL-IC 0.9036 0.7746 0.8040 0.8325 0.8313 0.8343 20 0.8833 0.7213 0.7235 0.7727 0.8036 0.7926
MIC 0.8881 0.7602 0.7709 0.8135 0.8162 0.8219 0.8508 0.6992 0.7308 0.7276 0.7355 0.7642
IMG 0.9205 0.8143 0.8232 0.8426 0.8517 0.8433 0.9004 0.7323 0.7534 0.8103 0.8043 0.8032
USL 0.8934 0.7937 0.8023 0.8321 0.8334 0.8228 0.8523 0.7047 0.7091 0.7687 0.7798 0.7806

DAIMC 0.9202 0.8230 0.8342 0.8538 0.8512 0.8504 0.8860 0.7286 0.7817 0.8247 0.8255 0.8135
DIMC 0.9300 0.8304 0.8432 0.8539 0.8631 0.8541 0.9020 0.7384 0.7788 0.8304 0.8214 0.8141

ASGC-PMVC 0.9556 0.8727 0.8932 0.9146 0.9132 0.9160 0.9236 0.7889 0.8204 0.8563 0.8560 0.8565
BDGP NMF 0.4560 0.3814 0.1140 0.3683 0.2562 0.6762 0.4492 0.3302 0.0706 0.3433 0.2336 0.7301

GMultiNMF 0.5868 0.3440 0.2922 0.4348 0.4309 0.4388 0.4292 0.1502 0.1142 0.3005 0.2853 0.3173
OMVC 0.6203 0.6033 0.6132 0.6523 0.6639 0.6942 0.6091 0.4788 0.4899 0.5330 0.5706 0.6142

PVC 0.8368 0.6330 0.6433 0.7448 0.7312 0.7576 0.7836 0.5443 0.5508 0.6807 0.6794 0.6821
GPMVC 0.8359 0.6440 0.6429 0.7748 0.7373 0.7438 0.7904 0.5642 0.5620 0.6915 0.6919 0.6933

30 MVL-IC 0.8340 0.6232 0.6223 0.7640 0.7323 0.7315 40 0.7730 0.5485 0.5475 0.6739 0.6738 0.6923
MIC 0.7976 0.6070 0.6078 0.7417 0.7455 0.7664 0.7793 0.5675 0.5642 0.7125 0.6855 0.7047
IMG 0.8423 0.6395 0.6467 0.7580 0.7503 0.7759 0.8001 0.5932 0.5822 0.7112 0.6837 0.7229
USL 0.8132 0.6136 0.6229 0.7520 0.7442 0.7526 0.7732 0.5543 0.5630 0.6624 0.6544 0.6628

DAIMC 0.8326 0.6475 0.6715 0.7358 0.7466 0.7893 0.8029 0.6017 0.6028 0.7023 0.6910 0.7439
DIMC 0.8242 0.7131 0.7570 0.7921 0.7489 0.7984 0.7857 0.6133 0.6274 0.7472 0.6867 0.7509

ASGC-PMVC 0.9056 0.7541 0.7807 0.8245 0.8232 0.8259 0.8656 0.6728 0.6964 0.7573 0.7545 0.7600
NMF 0.4254 0.3299 0.1255 0.3947 0.2814 0.3752 0.4064 0.3193 0.1201 0.3867 0.2550 0.3636

GMultiNMF 0.4288 0.3297 0.1218 0.4059 0.2942 0.4026 0.4208 0.3044 0.0970 0.3832 0.2871 0.3752
OMVC 0.4455 0.3447 0.1835 0.4154 0.3133 0.4658 0.4203 0.3223 0.1775 0.4036 0.3096 0.4586

PVC 0.5247 0.3718 0.2437 0.4336 0.3767 0.3973 0.5006 0.3285 0.2188 0.4093 0.3653 0.3837
GPMVC 0.4961 0.3435 0.2032 0.4366 0.3251 0.4831 0.4832 0.3283 0.1766 0.4110 0.3089 0.4769

10 MVL-IC 0.4751 0.2735 0.2453 0.3963 0.3703 0.3703 20 0.4721 0.2662 0.2214 0.3818 0.3529 0.3729
MIC 0.5261 0.3637 0.2744 0.4556 0.3820 0.5041 0.4960 0.3597 0.2628 0.4350 0.3822 0.4857
IMG 0.5134 0.3961 0.3018 0.4732 0.4305 0.5119 0.5113 0.3710 0.2844 0.4594 0.4223 0.4869
USL 0.5098 0.3897 0.2937 0.4691 0.4358 0.5041 0.5003 0.3839 0.2941 0.4647 0.4128 0.4829

DAIMC 0.4779 0.3701 0.3211 0.4412 0.4432 0.5277 0.4747 0.3517 0.2937 0.4378 0.4199 0.5084
DIMC 0.5277 0.4121 0.3062 0.4924 0.4342 0.5036 0.5135 0.3824 0.3039 0.4745 0.4263 0.4976

ASGC-PMVC 0.5473 0.4183 0.3502 0.5167 0.4566 0.5625 0.5443 0.4039 0.3414 0.5024 0.4523 0.5414
Kitti NMF 0.3901 0.2923 0.0844 0.3608 0.2422 0.3439 0.3746 0.2890 0.0765 0.3592 0.2405 0.3397

GMultiNMF 0.3959 0.3028 0.0769 0.3589 0.2611 0.3521 0.3893 0.2944 0.0743 0.3531 0.2524 0.3489
OMVC 0.4201 0.3006 0.1602 0.3809 0.3002 0.4442 0.4158 0.2917 0.1539 0.3746 0.2974 0.4388

PVC 0.4768 0.2662 0.1997 0.3711 0.3611 0.3804 0.4601 0.2597 0.1894 0.3682 0.3608 0.3756
GPMVC 0.4668 0.3107 0.1521 0.3989 0.2847 0.4721 0.4170 0.2921 0.1380 0.3597 0.3073 0.4659

30 MVL-IC 0.4711 0.2541 0.1903 0.3623 0.3532 0.3703 40 0.4380 0.2089 0.1626 0.3437 0.3772 0.3314
MIC 0.4703 0.3318 0.2408 0.4112 0.3702 0.4601 0.4349 0.2999 0.2144 0.3837 0.3647 0.4480
IMG 0.5021 0.3702 0.2789 0.4411 0.3921 0.4832 0.4804 0.3655 0.2466 0.3793 0.4024 0.4440
USL 0.4825 0.3719 0.2651 0.4409 0.3935 0.4723 0.4420 0.3634 0.2691 0.4336 0.3758 0.4515

DAIMC 0.4498 0.3521 0.2907 0.4321 0.4002 0.4879 0.4190 0.3412 0.2427 0.4310 0.4117 0.4925
DIMC 0.5136 0.3812 0.3025 0.4511 0.4001 0.4812 0.5108 0.3608 0.2915 0.4345 0.3797 0.4919

ASGC-PMVC 0.5367 0.3933 0.3219 0.4702 0.4357 0.5221 0.5310 0.3737 0.2927 0.4434 0.4195 0.5129
NMF 0.6024 0.7064 0.3148 0.3133 0.2151 0.5774 0.5142 0.6873 0.2531 0.2315 0.1553 0.5366

GMultiNMF 0.6141 0.7177 0.2869 0.3645 0.2809 0.6259 0.5471 0.6749 0.2603 0.3384 0.2338 0.5439
OMVC 0.6212 0.7482 0.3185 0.3362 0.3465 0.6916 0.6022 0.7000 0.2360 0.2767 0.2769 0.6198

GPMVC 0.4666 0.5574 0.4082 0.3129 0.4023 0.4935 0.4297 0.5454 0.3099 0.3106 0.3323 0.3967
10 MVL-IC 0.6879 0.7622 0.6357 0.5698 0.6186 0.6409 20 0.6418 0.7032 0.5627 0.5272 0.5548 0.5878

MIC 0.7399 0.7152 0.5761 0.5811 0.5776 0.6253 0.6718 0.6925 0.5417 0.5998 0.6143 0.6528
USL 0.6979 0.7568 0.6641 0.6251 0.5587 0.7405 0.6822 0.7183 0.6057 0.6490 0.5518 0.6699

DAIMC 0.7005 0.8016 0.6236 0.6418 0.6803 0.6782 0.6150 0.7433 0.6128 0.6739 0.6483 0.6571
DIMC 0.7604 0.7625 0.6798 0.6875 0.6532 0.7111 0.6960 0.7373 0.5892 0.6852 0.6091 0.6933

ASGC-PMVC 0.7595 0.8281 0.7411 0.7315 0.7156 0.7785 0.7219 0.7991 0.6532 0.7220 0.6501 0.7361
COIL NMF 0.5138 0.5949 0.1700 0.2318 0.1538 0.4718 0.3572 0.4938 0.0922 0.1592 0.0573 0.2515

GMultiNMF 0.5414 0.6090 0.1804 0.2414 0.1602 0.4920 0.4525 0.5785 0.2005 0.2392 0.1633 0.3008
OMVC 0.5501 0.6165 0.2253 0.2558 0.2523 0.5503 0.4700 0.5780 0.2304 0.2683 0.2328 0.4366

GPMVC 0.4194 0.4987 0.2661 0.3047 0.2861 0.3322 0.4173 0.5009 0.2802 0.2906 0.2910 0.3379
30 MVL-IC 0.5635 0.6569 0.5077 0.4898 0.5016 0.5701 40 0.4941 0.5835 0.3411 0.3623 0.4055 0.4589

MIC 0.5861 0.6111 0.4982 0.5252 0.4805 0.5791 0.5094 0.5712 0.3574 0.3950 0.4149 0.4643
USL 0.6119 0.7103 0.5385 0.5603 0.5092 0.6256 0.5245 0.5825 0.3634 0.4068 0.4078 0.4986

DAIMC 0.5959 0.7261 0.5517 0.5851 0.5523 0.6002 0.5341 0.5895 0.3947 0.4230 0.4155 0.5049
DIMC 0.6291 0.7183 0.5603 0.5462 0.5290 0.6325 0.5388 0.5678 0.3745 0.4036 0.4235 0.5150

ASGC-PMVC 0.6722 0.7622 0.6062 0.6273 0.5786 0.6849 0.5789 0.6535 0.4207 0.4691 0.4604 0.5521

and used NMI for evaluation purposes. The PSRV values in
the first LBP view (PSRVl) were varied at 10% and 90%.
Clustering results are listed in Fig. 14. The LBP feature could
obtain a more identifiable structure than intensity and Gabor
views, and the clustering performance in the LBP view was
better than that in the other two views. Thus, with the loss
of numerous LBP features (PSRVl=90%), the performance
worsened as compared to the situation with numerous other
missing features (PSRVl=10%). We could observe that the
proposed ASGC-PMVC model outperformed the compared
methods because the adaptive strategy was employed.

4) Clustering results on NUS-WIDE: The NUS-WIDE,
which is a naturally incomplete dataset, contains 4,000 com-
plete samples with both visual and text views and 4,500
incomplete samples in which the text information of 1,500
samples and the visual information of 3,000 samples are both
missing. Thus, PSR was 53% and PVR was 26%, and of
the incomplete data, 18% samples suffered from missing text
views, whereas 35% samples suffered from missing image
views. Clustering results are listed in Table III, where we can
observe that the proposed ASGC-PMVC model outperformed
the compared baselines.
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Fig. 14: NMI results for varied PSRVl values (%) on the COIL
dataset.

TABLE III: Clustering results on the NUS-WIDE dataset.

ACC NMI AR F-score Precision Recall
NMF 0.5101 0.3607 0.2130 0.4174 0.3248 0.5924

GmultiNMF 0.5814 0.4009 0.3585 0.4984 0.4569 0.5322
OMVC 0.6805 0.4663 0.4175 0.5523 0.5329 0.5480

PVC 0.6277 0.3216 0.2856 0.4350 0.4156 0.4564
GPMVC 0.6357 0.4281 0.3172 0.4709 0.4355 0.4834
MVL-IC 0.6710 0.4568 0.4073 0.5318 0.4591 0.5301

MIC 0.6922 0.4821 0.4261 0.5631 0.5489 0.5538
IMG 0.7336 0.4875 0.4727 0.5745 0.5693 0.5898
USL 0.7002 0.4901 0.4935 0.5973 0.5916 0.6021

DAIMC 0.7355 0.4756 0.4903 0.6095 0.5852 0.5943
DIMC 0.7251 0.4868 0.4937 0.5926 0.5793 0.6059

ASGC-PMVC 0.7848 0.5152 0.5368 0.6302 0.6244 0.6362

VI. CONCLUSION

In this study, we proposed a novel method called ASGC-
PMVC, which uses a small amount of complete data to boost
the clustering accuracy on a large amount of partial multiview
data. For complete and incomplete data, we considered the
different contributions from samples in multiple views to
identify the underlying clustering structure. This structure was
utilized to guide the clustering process on incomplete multi-
view data. Simultaneously, the large amount of incomplete
data also provided more information to improve the clustering
performance. An efficient iterative algorithm with guaranteed
convergence was developed to solve the proposed joint model.
Experimental results demonstrated that the proposed model
can achieve better performance than the state-of-the-art partial
multiview clustering methods.
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