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Dynamic Programming Aims and Objectives

▶ Aims and Objectives
Know the definition of DP

Optimal substructure and
Overlapped subproblems

prove DP applicable to a problem
Solving a real problem using DP

▶ Practice
0/1 Knapsack
Matrix Multiplication Chains
All Pairs Shortest Paths
Maximum Non-crossing Subset nets
Longest Common Subsequence
Hidden Markov Model
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Dynamic Programming What is DP
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Dynamic Programming What is DP

.. An exmple of task sheduling
.

......
In a weighted staged directed graph G , we want to search the shortest
path from start node s to the terminal node e.
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The sub-path from a node in the
Global Shortest Path(GSP) to the
terminal node is also shortest .
For the node 1, whichever of its
neighbor is in {2, 3, 4}, if it
is in GSP, then sub-path of GSP
from it to the terminal is also
shortest

.

We call this property as
the Optimal Substructure of
subproblems in the procedure of
problem decomposition..
We also should noted that there
are some overlapped subproblems
in seeking the shortest paths.

. 3.
5

Define that c(i) is the shortest
distance from i to e, then
c(e) = 0 and c(s) is the goal
c(i) = min

j∈N(i)
{c(j) + cost(i , j)}

where N(i) is the set of
neighbors of i

Solve c(i) in reverse order
c(7) =0
c(6) =1, c(5) =2
c(4) =8+c(6)=9
c(3) = min{1 + c(5), 5 + c(6)}

= min{3, 6} = 3
c(2) =7, c(1) =7
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Dynamic Programming What is DP

.. Definition

▶ The term dynamic programming was originally used in the
1940s by Richard Bellman (Bellman equation)

DP refers specifically to nesting smaller decision problems
inside larger decisions.
Dynamic was chosen because it sounded impressive, not
because it described how the method worked.
Programming referred to the use of the method to find an
optimal programming.

▶ A method of solving complex problems by breaking them
down into simpler steps (subproblems) in recursive manner.

the solution can be produced by combining solutions to
subproblems;
the solution to each subproblem can be produced by combining
solutions to sub-subproblems, etc;
the total number of subproblems arising recursively is
polynomial.
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Dynamic Programming What is DP

.. Where DP appliable?

▶ Optimal substructure(Principle of Optimization)
A problem is said to have optimal substructure if an optimal
solution can be constructed efficiently from optimal solutions
to its subproblems.

In other words, a problem exhibits optimal substructure if an
optimal solution to the problem contains within it optimal
solutions to subproblems.

Subproblems must be only ’slightly’ smaller than the larger
problem

A constant additive factor
A multiplicative factor: D&C

▶ Overlapping subproblems
A problem said to have overlapping subproblems if the problem
can be broken down into subproblems which are reused several
times

▶ DP ≈ Recursion + Memorization
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Dynamic Programming What is DP

.. Procedures
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1 Identifying subproblems 1-2 , 1-3 or 1-4 ?
2 Validating principle of optimization What happen if not
3 Defining an optimal value function Assumed that c(i) is the short-

est distance from i to e
4 Deriving the recursive equation c(i)= min

j∈N(i)
{ c(j) +cost(i,j) }

5 Solving the recursive equation c(7) - c(6) - c(5) - c(4)- c(3) -
c(2) -c(1)

6 Tracebacking the optimal solution P(1) - P(3) -P(5) -P(7)
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Dynamic Programming 0/1 Knapsack Problem

.. Probelm statements

Given a set of items, each with a mass and a value, determine the
number of each item to include in a collection so that the total
weight is less than or equal to a given limit(capacity) and the total
value is as large as possible.
Formal representation: Given n > 0, c > 0 and two n-tuples of
positive numbers: (w1, w2, · · · , wn) and (p1, p2, · · · , pn).

we wish to determine the subset
T ⊂ {1...n} such that

Maximize:
∑

i∈T
pi

Subjects to:
∑

i∈T
wi ≤ c

If used a n-tuple of indicator vari-
ables (x1, x2, · · · , xn) , then

Maximize:
n∑

i=1
xi ∗ pi

Subjects to:
n∑

i=1
xi ∗ wi ≤ c
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Dynamic Programming 0/1 Knapsack Problem

.. Solutions

▶ Brute force:Try all 2n possible subsets T
▶ Greedy

choose items maximizing value ?
choose items maximizing value/size
the second looks much great, but what if items dont exactly fit
(non-divisible items)?

▶ any others?
traceback
branch and bound
...

▶ Dynamic programming is one of great choice
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Dynamic Programming 0/1 Knapsack Problem

.. Step 1. Identifying subproblems
.. n=5, c=10.
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▶ By fewer items: take an item i without consideration , what
changed?

the number of items n becomes n − 1, and
the capacities become c or c − wi , why?
So the subproblem is constrained by two parameters.

▶ By smaller knapsack capacities,reduce the capacity, what
changed?

the capacities become smaller c ′

supposed that this is caused by removing an item
i ,c ′ = c − wi , and thus the optimal value f (c) = f (c − wi)+ vi
however, we donn’t know which i ,
f (c) = max

i=1,wi <c
f (c − wi) + vi
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Dynamic Programming 0/1 Knapsack Problem

.. Step 2. Validating Principle of Optimization
.. n=5, c=10.
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[Optimal substructure] A problem exhibits optimal substructure if
an optimal solution to the problem contains within it optimal
solutions to subproblems.

▶ Supposed that (x1, x2, · · · , xn) is the optimal solution of
original problem P0.

▶ (y1, y2, · · · , yn−1) is the optimal solution of its subproblem P ′

with items 1, 2, · · · , n − 1 and capacities c − xn ∗ wn.
▶ We should show that (y1, y2, · · · , yn−1, xn) is no worse than

(x1, x2, · · · , xn) to P0

▶ How? using a ”cut-and-paste” technique (homework)
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Dynamic Programming 0/1 Knapsack Problem

.. Step 3. Defining an optimal value function
.. n=5, c=10.
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We have known that a subproblem is constrained by two
parameters: number of items and capacities.

▶ For a given subproblem with items i , i + 1, · · · , n and
capacities y , we define its optimal value by f (i , y) .

▶ f (n, 0) = 0, and f (n, wn) = pn if wn < c else 0
▶ f (1, c) is our goal, why?
▶ How to get f (1, c) from f (n, y) ?
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Dynamic Programming 0/1 Knapsack Problem

.. Step 4. Deriving the recursive equation
.. n=5, c=10.
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To calculate f (i , y) from f (i + 1, y), we only need know if item i
could be included

▶ If wi > y , item i couldn’t be included, f (i , y) = f (i + 1, y).
▶ If wi ≤ y , item i might be included

if so, f (i , y) = f (i + 1, y − wi) + pi
else, f (i , y) = f (i + 1, y), why?
finally, we use the larger one.
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Dynamic Programming 0/1 Knapsack Problem

.. Step 5. Solve recursive equation

Now we have the recursive equation

f (i , y) =


f (i + 1, y) if 0 ≤ y < wi

max
{

f (i + 1, y − wi) + pi

f (i + 1, y)
if y ≥ wj

(1)

and the initial condition

f (n, y) =
{

pn if y ≥ wn

0 if 0 ≤ y < wn
(2)

How to solve them?
▶ Recursive version
▶ Non-recursive version
▶ Tuple version
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Dynamic Programming 0/1 Knapsack Problem

.. Recursive version
Algorithm 1: RKnapsack

Input: n,c,p[1..n],w[1..n]
Output: the optimal value f (1, c)

1 Function f(int i, int y)
2 if (i==n) then
3 return (y < w [n]?0 : p[n] );

4 if (y < w [i]) then
5 return f(i-1,y) ;

6 return max(f(i-1,y),f(i-1,y-w[i])+p[i]) ;

Algorithm complexity: We use
t(n) to denote the algorithm
time complexity with n items

▶ t(1) = a
▶ At the best case(step4),

t(n) = t(n − 1) + b, so
t(n) = Θ(n)

▶ At the worst case(step6),
t(n) = 2t(n − 1) + b, so
t(n) = Θ(2n)
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Figure : Recursive Call Relation Tree

..10.
10

.

10

.

10

.

10

.

5

.

4

.

4

.

8

.

8

.

8

.

3

.

2

.

2

.
8

.

8

.

8

.

8

.

3

.

2

.

2

.

6

.

6

.

6

.

2

.

0

.

0

. the number in the node is y value and
the layer order corresponds to i,

there are total 26 nodes
..

.

......

If these repetitive calls are saved,
the algorithm complexity should be
reduced!
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Dynamic Programming 0/1 Knapsack Problem

.. First attempt: using array

..

.
Comments..

......

▶ The algorithm saves all possible values using an
array f , so that every f (i, y) is calculated only
once.

▶ It needs Θ(nc) extra space.

▶ Its time complexity is Θ(nc) .

It is not polynomial: to describe c need
log2c bits
but pseudo-polynomial: exponential
dependence on numerical inputs

▶ Its disadvantage

The capacity c must an integer
The complexity might still be very hight
when c is large enough, for instance
c = 2n
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Dynamic Programming 0/1 Knapsack Problem

.. Second attempt: using a tuple

.. n=5, c=10.
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▶ Calculate f values using array
f (5, 0) = 0, · · · , f (5, 4) = 6, · · · , f (5, 10) = 6
f (4, 0) = 0, · · · , f (4, 4) = 6, · · · , f (4, 9) = 10), f (4, 10) = 10
· · ·

▶ Save step points only for each i
Define a tuple (a, b), where a = y and b = f (i , y)
(a, b) corresponds an optimal loading with capacity a and
value b
Put all tuples into a set Pi
Pn can be got easily. Pn = {(0, 0), (wn, pn)}
P1 contains our goal! Why?
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Dynamic Programming 0/1 Knapsack Problem

.. Tuple method: principle

▶ Let Q = {(s, t)|wi ≤ s < c, (s − wi , t − pi) ∈ Pi+1}
Q corresponds Pi in which item i has been selected
Pi+1 corresponds Pi in which item i has not been selected
thus, Pi = Q

∪
Pi+1

▶ Merge Q and Pi+1 to get Pi
remove dominated tuples ( a tuple (a, b) is dominated by
(u, v) if a > u , but b > v )
remove repeated tuples
remove over capacity tuples in which a > c

▶ The complexity is still O(2n). The number of elements in Pi
increase exponentially at worst case
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Dynamic Programming 0/1 Knapsack Problem

.. Tuple method:an example

..n=5, c=10.
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1. P(5)=[(0,0), (4,6) ] Q=[(5,4),(9,10)]
2. P(4)=[(0,0),(4,6),(9,10)] Q=[(6,5),(10,11)]

3. P(3)=[(0, 0), (4, 6), (9, 10),
(10, 11)] Q=[(2,3),(6,9)]

4. P(2)=[(0,0), (2,3), (4,6),
(6,9), (9,10), (10,11)]

Q=[(2,6), (4,9), (6,12),
(8,15)]

5. P(1)=[(0,0), (2,6), (4,9),
(6,12), (8,15)]

The optimal value is 15 and the optimal solution is
[1,1,0,0,1] by tracebacking
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Dynamic Programming Matrix Multiplication Chains

.. Problem Description

▶ Two matrices A×B with dimension (m,n) and (n,q) takes mnq
multiplications.

▶ Let’s consider three matrices: A×B×C with dimension
(100,1) , (1,100) and (100,1) . The product can be done:

(A×B)×C takes 20000 multiplications.
A×(B×C)takes 200 multiplications.
Any other way? No

Associative law : (A× B)×C = A×(B× C)
Commutative law: A× B ̸= B× A

the order of multiplications makes a big difference in the final
running time!

▶ Matrix Multiplication Chains. Suppose that we multiply q
matrices

M(1, q) = M1 × M2 × · · · × Mq
There are q + 1 (r1, r2, · · · , rq, rq+1 )numbers(parameters) to
constrain their dimensions. Why?

GONG Xiu-Jun Lecture 4: Dynamic Programming 20 / 4



Dynamic Programming Matrix Multiplication Chains

.. Identifying subproblems

▶ The number of orders of multiplications equal to the number
of parenthesization

P(q) =


1 if q = 2
q−1∑
k=1

p(k)p(q − k) if q ≥ 2

T (q) ≈ O(4qq
3
2 )

≈ O(2q)

▶ In fact, a particular parenthesization can be represented by a
binary tree

The leaves corresponds to matrices
The root corresponds to the final product
Interior nodes are intermediate products
If a tree to be optimal, its subtrees must also be optimal.

▶ The binary tree representation suggests that
A subtree corresponds to a subproblem in MPC , so
MPC satisfies the principle of optimization
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Dynamic Programming Matrix Multiplication Chains

.. Define the optimal function

Define c(i , j) is the cost of Mi × Mi+1 × · · · × Mj
▶ c(0, 0) = 0
▶ c(i , i) = 0
▶ c(i , i + 1) = ri ∗ rj ∗ rj+1
▶ c(1, q) is our goal
▶ The recursive equation is

c(i , j) = mini≤k<j{c(i , k) + c(k, j) + rk ∗ rj ∗ rj+1} (3)

▶ Let kay(i,j) is the number minimizing above equation.
kay(i,i)=0
kay(i,i+1)=i
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Dynamic Programming Matrix Multiplication Chains

.. An exmple

Suppose that q =5 and r =(10 , 5 , 1 , 10 , 2 , 10), find the
optimal orders of multiplications

M(1, 5) = M(1, 2) × M(3, 5) M(3, 5) = M(3, 4) × M(5, 5)

c(1,5)=min {c(1,1)+c(2,5)+500, c(1,5)=190, kay(1,5)=2
c(1,2)+c(3,5)+100,
c(1,3)+c(4,5)+1000, c(1,3)=150, kay(1,3)=2
c(1,4)+c(5,5)+200} c(1,4)=90, kay(1,4)=2

c(2,5)=min {c(2,2)+c(3,5)+50,
c(2,3)+c(4,5)+500, c(2,5)=90, kay(2,5)=2
c(2,4)+c(5,5)+100}

c(3,5)=min {c(3,3)+c(4,5)+100,
c(3,4)+c(5,5)+20} c(3,5)=40,kay(3,5)=4
min{300,40} =40

c(2,4)=min {c(2,2)+c(3,4)+10,
c(2,3)+c(4,4)+100} c(2,4)=30,kay(2,4)=2
min{30,150} =30
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Dynamic Programming Matrix Multiplication Chains

.. Recursive Algorithm for MPC
1 int RC(int i, int j)
2 {// Return c(i,j) and compute kay (i,j)= kay [i

][j].
3 // Avoid recomputations , check if already

computed
4 if (c[i][j] > 0) return c[i][j];
5 // c[i][j] not computed before , compute now
6 if (i == j) return 0; // one matrix
7 if (i == j - 1) {// two matrices
8 kay[i][i+1] = i;
9 c[i][j] = r[i]*r[i+1]*r[

i+2];
10 return c[i][j];}
11 // more than two matrices
12 // set u to mini term for k = i
13 int u = RC(i,i) + RC(i+1,j) + r[i]*r[i

+1]*r[j+1];
14 kay[i][j] = i;
15 // compute remaining min terms and update u
16 for (int k = i+1; k < j; k++) {
17 int t = RC(i,k) + RC(k+1,j) + r[i]*r[k

+1]*r[j+1];
18 if (t < u) {// smaller min term
19 u = t;
20 kay[i][j] = k;}
21 }
22 c[i][j] = u;
23 return u;
24 }

1 void Traceback(int i, int j, int
**kay)

2 {
3 if (i == j) return;
4 Traceback(i, kay[i][j], kay);
5 Traceback(kay[i][j]+1, j, kay

);
6 cout << "Multiply␣M␣" << i <<

",␣" << kay[i][j];
7 cout << "␣and␣M␣" << (kay[i][

j]+1) << ",␣" << j
8 << endl;
9 }
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Dynamic Programming Matrix Multiplication Chains

.. Revision recursive algorithm

.

......

The above figure suggest that c(i , j) can be calculated in an iterative
miner

c(i , i + s) = min
i≤k<s

{c(i , k) + c(k, j) + ri ∗ rk ∗ ri+s+1}

s = 1, 2, · · · , q

GONG Xiu-Jun Lecture 4: Dynamic Programming 25 / 4



Dynamic Programming Matrix Multiplication Chains

.. Iterative algorithm for MPC

1 void MatrixChain(int r[], int q, int **c, int **kay)
2 {// Compute costs and kay for all Mij ’s.
3 // initialize c[i][i],c[i][i+1] , and kay [i][i +1]
4 for (int i = 1; i < q; i++) {
5 c[i][i] = 0;
6 c[i][i+1] = r[i]*r[i+1]*r[i+2];
7 kay[i][i+1] = i;
8 }
9 c[q][q] = 0;

10 // compute remaining c’s and kay ’s
11 for (int s = 2; s < q; s++)
12 for (int i = 1; i <= q - s; i++) {
13 // min term for k = i
14 c[i][i+s] = c[i][i] + c[i+1][i+s]
15 + r[i]*r[i+1]*r[i+s+1];
16 kay[i][i+s] = i;
17 // remaining mini terms
18 for (int k = i+1; k < i + s; k++) {
19 int t = c[i][k] + c[k+1][i+s]
20 + r[i]*r[k+1]*r[i+s+1];
21 if (t < c[i][i+s]) {// smaller mini term
22 c[i][i+s] = t;
23 kay[i][i+s] = k;}
24 }
25 }
26 }
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Dynamic Programming All Pairs Shortest Path

.. Problem statement

▶ Input: Given a directed graph G = (V , E ) and a matrix (aij)
where

V = {1, 2, · · · , n}with edge weight functionW : E → R

aij =


w(i , j) if (i , j) ∈ E
0 if i = j
∞ otherwise

▶ Output: A n × n matrix of shortest-path lengths c(i , j)
▶ Assumption: No negative-weight cycles
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Dynamic Programming All Pairs Shortest Path

.. Subprobem identification by edges

▶ Define dm
ij = weight of a shortest path from i to j that only

uses at most m edges
▶ dn−1

ij is our goal
▶ We have known that

d0
ij = 0 if i = j , and ∞ if i ̸= j

d1
ij = 0 if i = j , and aij if i ̸= j

.
Theorem..

......

For m = 1, 2, · · · , n − 1, we have

dm
ij = min

1≤k<m
{dm−1

ik + akj}
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Dynamic Programming All Pairs Shortest Path

.. Proof

...

dm
ij = min

1≤k<m
{dm−1

ik + akj}

.

for k=1 to n
if dij > dik + akj

dij =dik + akj

Running time O(n4) - similar to n runs of Bellman-Ford algorithm
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Dynamic Programming All Pairs Shortest Path

.. Subprolems identification by intermediate vertices

▶ Define dm
ij = weight of a shortest path from i to j that only

uses intermediate vertices from set {1, , m} or
▶ Define dm

ij = weight of a shortest path from i to j that
the orders of intermediate vertices is no larger than m

▶ dn
ij is our goal

▶ We have known that
d0

ij = aij
dk−1

ik = dk
ik

dk−1
jk = dk

jk

.
Theorem..

......

For m = 1, 2, · · · , n-1, we have

dm
ij = min{dm−1

ij , dm−1
im + dm−1

mj }

GONG Xiu-Jun Lecture 4: Dynamic Programming 30 / 4



Dynamic Programming All Pairs Shortest Path

.. Proof

...

dm
ij = min{dm−1

ij , dm−1
im + dm−1

mj }

Running time O(n3) Known as Floyd-Warshall algorithm
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Dynamic Programming All Pairs Shortest Path

.. Iterative algorithm for ASAP

1 template <class T>
2 void AdjacencyWDigraph <T>:: AllPairs(T **c,

int **kay)
3 {// All pairs shortest paths .
4 // Compute c[i][j] and kay [i][j] for all i

and j.
5 // initialize c[i][j] = c(i,j ,0)
6 for (int i = 1; i <= n; i++)
7 for (int j = 1; j <= n; j++) {
8 c[i][j] = a[i][j];
9 kay[i][j] = 0;

10 }
11 for (int i = 1; i <= n; i++)
12 c[i][i] = 0;
13
14 // compute c[i][j] = c(i,j,k)
15 for (int k = 1; k <= n; k++)
16 for (int i = 1; i <= n; i++)
17 for (int j = 1; j <= n; j++) {
18 T t1 = c[i][k];
19 T t2 = c[k][j];
20 T t3 = c[i][j];
21 if (t1 != NoEdge && t2 != NoEdge

&&
22 (t3 == NoEdge || t1 + t2 < t3

)) {
23 c[i][j] = t1 + t2;
24 kay[i][j] = k;}
25 }
26 }

Kay[i][j] is used to store the largest vertex in the
shortest path from i to j, so that traceback the
shortest path

1 void outputPath(int **kay , int i,
int j)

2 {// Actual code to output i to j
path .

3 if (i == j) return;
4 if (kay[i][j] == 0) cout << j <<

’␣’;
5 else {outputPath(kay , i, kay[i][j

]);
6 outputPath(kay , kay[i][j],

j);}
7 }
8
9 template <class T>

10 void OutputPath(T **c, int **kay , T
NoEdge ,

11 int i, int
j)

12 {// Output shortest path from i to j
.

13 if (c[i][j] == NoEdge) {
14 cout << "There␣is␣no␣path␣from

␣" << i << "␣to␣"
15 << j << endl;
16 return ;}
17 cout << "The␣path␣is" << endl;
18 cout << i << ’␣’;
19 outputPath(kay ,i,j);
20 cout << endl;
21 }
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Dynamic Programming All Pairs Shortest Path

.. An example

..

..0 ..1 ..2 ..3 ..4

..3 ..0 ..1 ..2 ..3

..2 ..2 ..0 ..1 ..2

..5 ..5 ..3 ..0 ..1

..4 ..4 ..2 ..3 ..0

.

Adjacent matrix

.

..0 ..1 ..4 ..4 ..8

..3 ..0 ..1 ..5 ..9

..2 ..2 ..0 ..1 ..8

..8 ..8 ..9 ..0 ..1

..8 ..8 ..2 ..9 ..0

.

Distance matrix of shortest path

.

..0 ..0 ..2 ..3 ..4

..0 ..0 ..0 ..3 ..4

..0 ..0 ..0 ..0 ..4

..5 ..5 ..5 ..0 ..0

..3 ..3 ..0 ..3 ..0

.

matrix kayij

.......

▶ we can traceback the shortest paths from matrix (kayij), for
example, from 1 to 5

kay(1,5)=4 , kay(4,5) =0 , 4 → 5 is a sub-path
kay(1,4)=3, kay(3,5)=0, 3 → 4 is a sub-path
kay(1,3)=2, kay(2,3)=0, 2 → 3 is a sub-path
kay(1,2)=0 , 1 → 2 is a sub-path
The final shortest path is 1 → 2 → 3 → 4 → 5
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.. Problem statement

... 1.. 2.. 3.. 4.. 5.. 6.. 7.. 8.. 9.. 10..

1

..

2

..

3

..

4

..

5

..

6

..

7

..

8

..

9

..

10

.i 7→.

Ci 7→

▶ A 1-1 map (i , ci) is called a subnet
▶ Two subnets (i , ci) and (j , cj) are non-crossed if i < j then

ci < cj
▶ The set MNS(i , j) = {(u, cu)|u ≤ i , cu ̸= j} is called

non-crossing set if for ∀(p, cp) and ∀(q, cq) ∈ MNS(i , j) then
(p, cp) and (q, cq) are non-crossed

▶ Our goal is to find a MNS(n,n) with the maximum number of
elements

▶ Define size(i,j) =|MNS(i , j)|
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Dynamic Programming Maximum Non-crossing Subset of Nets

.. Derive the recursive equation
▶ Our goal is to maximize size(n,n)
▶ We have known that

size(1, j) =
{

0 if j < c1

1 if j ≥ c1
(4)

▶ We want to know the relationship between size(i,j) and
size(i-1,j)

if j < ci then (i , ci) /∈ MNS(i − 1, j) , thus size(i,j)=size(i-1,j)
if j ≥ ci , there are two cases

put (i , ci) into MNS(i-1,j), but (i , ci) might cross with items
in MNS(i-1,j) or result in smaller size, we have
size(i,j)=size(i-1,j)
put (i , ci) into MNS(i-1,j), no crossing, then ci−1 must be less
than ci − 1 ,else crossed with (i , ci) , thus we have
size(i,j)=size(i-1,ci -1)+1
finally, we choose the maximum of them!

size(i , j) =
{

size(i , j − 1) if j < ci

max{size(i − 1, j), size(i − 1, ci − 1) + 1} if j ≥ ci
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.. Problem statements

.
Definition 1: Subsequence..

......

Given a sequence X=x1x2 · · · xm, another sequence Z=z1z2 · · · zk is a
subsequence of X if there exists a strictly increasing sequence= x1x2 · · · xk
of indices of X such that for all j=1,2,...k, we have xij = zj .

Example 1: If X=abcdefg, Z=abdg is a subsequence of X.
.
Definition 2: Common subsequence..

......
Given two sequences X and Y, a sequence Z is a common subsequence of
X and Y if Z is a subsequence of both X and Y.

Example 2: X=abcdefg and Y=aaadgfd. Z=adf is a common
subsequence of X and Y
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Dynamic Programming Longest Common Subsequences

.. Definitions

.
Definition 3: Longest common subsequence:LCS..

......
A longest common subsequence of X and Y is a common subsequence of
X and Y with the longest length.

▶ Longest common subsequence may not be unique, for
example, strings both acd and abd are LCS of abcd and acbd

▶ LCS has been successfully applied to many fields
Bioinformatics, e.g. long preserved regions in genomes
file comparison, e.g. diff

▶ Solutions
Brute force approach: O(n2m)
DP approach: O(nm)
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.. DP approach for LCS
▶ Let’s consider the prefixes of x and y

x[1..i] ith prefix of x[1..m]
y[1..j] jth prefix of y[1..n]

▶ Subproblem: define c[i,j] =|LCS(x [1..i ], y [1..j])|
▶ c[m,n] is our goal
▶ We have known that c[1,1]=1 if x1 = y1 otherwise 0
▶ To derive recursive relationship, we use the following theorem

Theorem: Let X=x1x2 · · · xm and Y=y1y2 · · · yn be two
sequences, and Z=z1z2 · · · zk be any LCS of X and Y, then

...1 If xm = yn, then zk = xm = yn and Z[1..k-1] is an LCS of
X[1..m-1] and Y[1..n-1].

...2 If xm ̸= yn, then zk ̸= xm implies that Z is an LCS of
X[1..m-1] and Y.

...3 If xm ̸= yn, then zk ̸= yn implies that Z is an LCS of X and
Y[1..m-1].
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.. Recursive equation
By the theorem, we can easily get the recursive equation

c[i , j] =


0 if i=0 or j=0
c[i − 1, j − 1] + 1 if x[i]=y[j]
max{c[i − 1, j], c[i , j − 1]} otherwise

(6)

..

1 LCS(X,Y,m,n,b)
2 for i=1 to m do
3 c[i ,0]=0;
4 for j=0 to n do
5 c[0,j]=0;
6 for i=1 to m do
7 for j=1 to n do
8 {//b[i,j] stores the directions .
9 if x[i] ==y[j] then

10 c[i,j]=c[i-1,j -1]+1;
11 b[i,j]=1; //1- diagonal ,
12 else if c[i-1,j]>=c[i,j-1] then
13 c[i,j]=c[i-1,j]
14 b[i,j]=2; //2-up ,
15 else c[i,j]=c[i,j-1]
16 b[i,j]=3; //3-

forward .
17 }

.

LCS algorithm

.

1 PrintLCS(b,X,i,j)
2 i=m
3 j=n;
4 if i==0 or j==0 then exit;
5 if b[i,j]==1 then
6 {
7 i=i-1;
8 j=j-1;
9 print x[i];

10 }
11 if b[i,j]==2 i=i-1
12 if b[i,j]==3 j=j-1
13 Goto Step 3.

.

Print LCS algorithm
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