
A New Efficient Algorithm for Computing the
Longest Common Subsequence

Costas S. Iliopoulos and M. Sohel Rahman

Algorithm Design Group
Department of Computer Science, King’s College London,

Strand, London WC2R 2LS, England
{csi, sohel}@dcs.kcl.ac.uk

http://www.dcs.kcl.ac.uk/adg

Abstract. The longest common subsequence(LCS) problem is a clas-
sic and well-studied problem in computer science. The LCS problem is a
common task in DNA sequence analysis with many applications to genet-
ics and molecular biology. In this paper, we present a new and efficient
algorithm for solving the LCS problem for two strings. Our algorithm
runs in O(R log log n) time, where R is the total number of ordered
pairs of positions at which the two strings match.

1 Introduction

The longest common subsequence(LCS) problem is a classic and well-
studied problem in computer science with extensive applications in di-
verse areas ranging from spelling error corrections to molecular biology.
A subsequence of a string is obtained by deleting zero or more sym-
bols of that string. The longest common subsequence problem for two
strings, is to find a common subsequence in both strings, having max-
imum possible length. More formally, suppose we are given two strings
X[1..n] = X[1]X[2] . . . X[n] and Y [1..n] = Y [1]Y [2] . . . Y [n]. A sub-
sequence S[1..r] = S[1]S[2] . . . S[r], 0 < r ≤ n of X is obtained by
deleting n − r symbols from X. A common subsequence of two strings
X and Y , denoted cs(X, Y), is a subsequence common to both X and
Y . The longest common subsequence of X and Y , denoted lcs(X, Y) or
LCS(X, Y), is a common subsequence of maximum length. We denote
the length of lcs(X, Y) by r(X, Y). In this paper, we assume that the two
given strings are of equal length. But our results can be easily extended
to handle two strings of different length.

Problem “LCS”. LCS Problem for 2 Strings. Given strings X and Y ,
compute the Longest Common Subsequence of X and Y .

2

The longest common subsequence problem for k strings (k > 2) was
first shown to be NP-hard [14] and later proved to be hard to be approx-
imated [11]. The restricted but, probably, the more studied problem that
deals with two strings has been studied extensively [22, 17, 16, 15, 10, 9, 8].
The classic dynamic programming solution to LCS problem, invented by
Wagner and Fischer [22], has O(n2) worst case running time. Masek and
Paterson [15] improved this algorithm using the “Four-Russians” tech-
nique [2] to reduce the worst case running time to O(n2/ log n). Since
then not much improvement in terms of n can be found in the litera-
ture. However, several algorithms exist with complexities depending on
other parameters. For example, Myers in [16] and Nakatsu et al. in [17]
presented an O(nD) algorithm, where the parameter D is the simple Lev-
enshtein distance between the two given strings [12]. Another interesting
and perhaps more relevant parameter for this problem is R, which is
the total number of ordered pairs of positions at which the two strings
match. More formally, we say a pair (i, j), 1 ≤ i, j ≤ n, defines a match,
if X[i] = Y [j]. The set of all matches, M , is defined as follows:

M = {(i, j) | X[i] = Y [j], 1 ≤ i, j ≤ n}

Observe that |M | = R. Hunt and Szymanski [10] presented an algorithm
to solve Problem LCS in O((R + n) log n) time. They also cited appli-
cations, where R ∼ n and thereby claimed that for these applications
the algorithm would run in O(n log n) time. For a comprehensive com-
parison of the well-known algorithms for LCS problem and study of their
behaviour in various application environments the readers are referred
to [6].

In this paper, we revisit the much studied LCS problem for two strings
and present new algorithms using some novel ideas and interesting ob-
servations. Our main result is an O(R log log n) algorithm for Problem
LCS. The rest of the paper is organized as follows. In Sections 2 and 3,
we present the new algorithms to solve Problem LCS. In particular, we
present a new approach to solve Problem LCS in Section 2 which provides
the base of our new algorithms and also report a new algorithm (LCS-I)
that runs in O(n2 +R log log n) time1. In Section 3, we improve the run-
ning time of LCS-I using some novel techniques. The resulting algorithm,
LCS-II, runs in O(R log log n) time. We conclude in Section 4, with some
directions to future research.

1 This running time can be improved to O(n2 +R).

3

2 A New Algorithm

In this section, we present a new algorithm for the LCS problem based
on some ideas and observations introduced and employed in [19] to solve
some new interesting variants of the Problem LCS. The resulting algo-
rithm, namely LCS-I, will work in O(n2 + R log log n) time. Note that,
LCS-I is an easy extension of the algorithms presented in [19] and the
main contribution of this paper is an improved algorithm, namely LCS-
II, with O(R log log n) running time, to be presented in Section 3.

From the definition of LCS it is clear that, if (i, j) ∈ M , then we can
calculate T [i, j], 1 ≤ i, j ≤ n by employing the following equation:

T [i, j] =

Undefined if (i, j) /∈ M,

max 1≤`i<i
1≤`j<j

(`i,`j)∈M

(T [`i, `j]) + 1 if (i, j) ∈ M. (1)

Here we have used the tabular notion T [i, j] to denote r(X[1..i], Y [1..j]).
From Equation 1, it follows that only the entries T [i, j] such that (i, j) ∈
M are useful. Therefore, we can ignore all T [i, j] with (i, j) /∈ M from
the calculation. In order to do that, we need a preprocessing step to
construct the set M in sorted order according to their position they would
be considered in the algorithm (we consider a row by row operation). Such
a preprocessing algorithm, referred to as “Algorithm Pre” in the rest
of this paper, was presented in [19] which runs in O(R log log n) time.
After we have computed the set M (using Algorithm Pre), we can start
computing the entries T [i, j], (i, j) ∈ M according to the Equation 1.
Since we are not calculating all the entries of the table, we need to use a
global variable and appropriate pointers to keep track of the actual LCS.
It is easy to verify that a straightforward (inefficient) implementation of
Equation 1 would give us a running time of O(

∑
(i,j)∈M (i − 1)(j − 1) +

R log log n). We, on the other hand, present an efficient implementation
based on some interesting facts as follows.

Fact 1. Suppose (i, j) ∈ M . Then for all (i′, j), i′ > i ((i, j′), j′ > j), we
must have T [i′, j] ≥ T [i, j] (T [i, j′] ≥ T [i, j]). �

Fact 2. The calculation of the entry T [i, j], (i, j) ∈ M, 1 ≤ i, j ≤ n is
independent of any T [`, q], (`, q) ∈ M, ` = i, 1 ≤ q ≤ n. �

The idea is to avoid checking the (i− 1)(j− 1) entries and check only
(j − 1) (or (i − 1)) entries instead. We maintain an array H of length n
where, for T [i, j] we have, H[`] = max1<k<i,(k,`)∈M (T [k, `]), 1 ≤ ` ≤ n.

4

The ‘max’ operation, here, returns 0, if there does not exist any (k, `) ∈ M
within the range. Given the updated array H, we can easily perform the
task by checking only the (j − 1) entries of H. And Fact 1 makes it easy
to maintain the array H on the fly, as we proceed as follows. As usual,
we proceed in a row by row manner. We use another array S, of length
n, as a temporary storage. When we find an (i, j) ∈ M , after calculating
T [i, j], we store S[j] = T [i, j]. We continue to store in this way as long
as we are in the same row. As soon as we find an (i′, j) ∈ M, i′ > i, i.e.
we start processing a new row, we update H with new values from S.

The correctness of the above procedure follows from Fact 1 and 2.
However, we don’t still have the desired running time for the algorithm,
because we need to check a lot of entries to implement the max operation
in Equation 1. To achieve our goal, we have to be able to compute the
maximum from the elements of H array in constant time. To do that we
use the Range Maxima Query Problem.

Problem “RMAX”. Range Maxima Query Problem. Suppose we are
given a sequence A = a1a2...an. A Range Maxima (Minima) Query spec-
ifies an interval I = (is, ie), 1 ≤ is ≤ ie ≤ n and the goal is to find the
index ` with maximum (minimum) value a` for ` ∈ I.

Theorem 1. ([7, 5]). The RMAX problem can be solved in O(n) pre-
processing time and O(1) time per query. �

So using an appropriate query on duly updated H, we can compute the
max operation in Equation 1 in constant time. However there is a pre-
processing time of O(n) in case the array H gets updated. But since this
preprocessing is needed once per row (due to Fact 2), the computational
effort added is O(n2) in total. Therefore we get the following theorem.

Theorem 2. LCS-I solve Problem LCS in O(n2+R log log n) time using
θ(max(R, n)) space. �

The outline of LCS-I is presented formally in the form of Algorithm 1.
Note that we can shave off the log log n term from the running time
reported in Theorem 2 as follows. Since we have an n2 term anyway in the
running time, we do not need to compute the set M in the preprocessing
step using Algorithm Pre. Instead, we consider each T [i, j], 1 ≤ i, j ≤ n
and perform useful computation only when (i, j) ∈ M .

3 The Improved Algorithm

In this section, we present the main result of this paper. In particular, we
improve the running time of LCS-I, as reported in Theorem 2, with some

5

Algorithm 1 Outline of LCS-I
1: Construct the set M using Algorithm Pre. Let Mi = (i, j) ∈ M, 1 ≤ j ≤ n.
2: globalLCS.Instance = ε
3: globalLCS.Value = 0
4: for i = 1 to n do
5: S[i].V alue = 0 {Initialize the temporary array S}
6: S[i].Instance = ε
7: end for
8: for i = 1 to n do
9: H = S{Update H for the next row}

10: Preprocess H.V alue for Range Maxima Query
11: for each (i, j) ∈ Mi do
12: maxindex = RMQH(1, j − 1){Range Maxima Query on Array H}
13: T .V alue[i, j] = H[maxindex].V alue + 1
14: T .P rev[i, j] = H[maxindex].Instance
15: S[j].V alue = T.V alue[i, j]
16: S[j].Instance = (i, j)
17: if globalLCS.value < T .V alue[i, j] then
18: globalLCS.Value = T .V alue[i, j]
19: globalLCS.Instance = (i, j)
20: end if
21: end for
22: end for
23: return globalLCS

nontrivial modifications. The resulting Algorithm, LCS-II, will eventu-
ally run in O(R log log n) time. As is explained in the previous section,
LCS-I exploits the constant time query operation (Theorem 1) of Prob-
lem RMAX. However, due to the O(n) preprocessing step of RMAX, we
can’t eliminate the n2 term from the running time of LCS-I. But a very
important, albeit easily observable, fact is that the range maxima queries
made in LCS-I is always of a special form.

Fact 3. All the range maxima queries in Algorithm LCS-I are of the form
RMQ(1, j), 0 ≤ j ≤ n. �

From Fact 3, it seems that Problem RMAX may be too general a tool
to solve LCS and it seems to be worthwhile to look for a better solution
exploiting the special query structure reported in Fact 3. Indeed, as we
shall show that we can exploit this special structure in the query to avoid
the O(n) preprocessing step and hence the n2 term from the running time
reported in Theorem 2. However the price we pay is that the query time
increases to O(log log n). We present the idea as follows.

Assume that we have an array A[1..n] on which we want to apply the
range maxima queries. We now use an elegant data structure (referred

6

... → (αi, xi) → (αj , xj) → (αk, xk) → ...

Fig. 1. Partial EA with ei, ej , and ek

to as vEB data structure henceforth) invented by van Emde Boas [21]
that allows us to maintain a sorted list of integers in the range [1..n] in
O(log log n) time per insertion and deletion. In addition to that it can re-
turn next(i) (successor element of i in the list) and prev(i) (predecessor el-
ement of i in the list) in constant time. We maintain a vEB data structure
EA, where each element ei ∈ E, 1 ≤ i ≤ |EA| is a 2-tuple (V alue, Pos).
The order in EA is maintained according to ei.Pos, 1 ≤ i ≤ |EA|. Now
consider 3 entries ei, ej , ek ∈ EA such that ej = next(ei), ek = next(ej).
Let ei = (αi, xi), ej = (αj , xj) and ek = (αk, xk) (Figure 1). The invariant
we maintain is as follows:

RMQ(1..x) = αi, prev(ei).Pos < x ≤ xi

RMQ(1..x) = αj , xi < x ≤ xj

RMQ(1..x) = αk, xj < x ≤ xk

Assuming that we have the above data structure at our disposal, answer-
ing a query is easy as follows. Consider a query RMQ(1..x′). To answer
this query, we just need to return the ‘Value’ of the element, which would
be next in order, if a new element with Pos = x′ were inserted in EA.
So, we create an entry e′ = (null, x′) and insert it in EA and get the
‘Value’ of the Next(e′). Finally, we delete e′ = (null, x′) from EA. The
only thing we need to ensure is that if there is already an entry e in EA

such that e.Pos = x′, e′ must be placed before e in EA. This is to ensure
that Next(e′) = e, as required. This can be easily achieved if we take
‘Value’ into account while preserving the order in EA for equal values of
‘Pos’ and assume ‘null’ to be a lesser value than any other ‘Value’. Note,
however, that, by definition, in ‘normal’ state, there can be no two ele-
ments in EA having same value for ‘Pos’.The steps are formally presented
in Algorithm 2.

The correctness of Algorithm 2 follows from the invariants maintained
for EA. Now it remains to show how we can maintain that invariant under
update operations in the context of the Algorithm LCS-I. Recall that our
goal is to get the answer of appropriate range maxima queries on the
array H in Algorithm LCS-I and we operate in a row by row basis. For
the sake of convenience, we use the following notation.

Mi = {(i, j)|X[i] = Y [j], 1 ≤ j ≤ n}

7

Algorithm 2 Steps to answer the query RMQ(1..x′) on array A

1: Insert e′ = (null, x′) in EA

2: Result = Next(e′).V alue
3: Delete e′ from EA

4: return Result

We start with reporting the following fact.

Fact 4. T [i, j] = 1, for all (i, j) ∈ M1. �

In cases, where M1 = ∅ or a number of subsequent Mi = ∅, i > 1, we have
the following fact.

Fact 5. T [i, j] = 1, for all (i, j) ∈ Mi such that Mk = ∅, for all 1 ≤ k <
i. �

(0, j′ − 1) → (1, n) → (∞,∞)

Fig. 2. Initial EH

We initialize EH with three elements, es = (0, j′ − 1), ee = (1, n)
and e∞ = (∞,∞), where (1, j′) ∈ M1 and there exists no j < j′ such
that (1, j) ∈ M1 (Figure 2). Note that, if M1 = ∅ then, for initialization,
we have to use Mi instead of M1 such that Mk = ∅, for all 1 ≤ k < i
(Fact 5). This initialization of EH correctly maintains the invariants for
the processing of the next row. Indeed, for the next row, we must have
RMQ(1..x) = 0 if x ≤ j′−1 (j′−1 is defined as above) and RMQ(1..x) =
1 otherwise. The last element, e∞, is required to tackle the general cases
and here we assume∞ to be greater than any number. Now let us consider
the case, where we process the subsequent rows. It is important to note
that as we process a particular row i, for each (i, j) ∈ Mi, we need to
update EH ; but this update is effective only for the next row, i.e. row
i+1. So, as we process row i we perform the update on a temporary copy
and as soon as row i is completely processed we actually change the EH

to make it ready for row i+1. In what follows, for the sake of convenience,
we denote by Ei

H the ‘state’ of EH which is used to process row i.
Now consider the case that we are in row i and processing the match

(i, x′ + 1) ∈ Mi. It is easy to see that we need the answer of the query
RMQ(1..x′), which can be obtained easily applying Algorithm 2 on Ei

H .
So, according to LCS-I, we would compute T [i, x′+1] = RMQ(1..x′)+1 =

8

... → (αi, xi) → (αj , xj) → (αk, xk) → ...

Fig. 3. Partial Ei+1
H with ei, ej , and ek

α′(let). Now we need to consider the updating of Ei
H to get the Ei+1

H to be
used when processing row i + 1. We initialize Ei+1

H with Ei
H and for each

match (i, j) ∈ Mi we continue to update Ei+1
H so that we get the ‘correct’

Ei+1
H as soon as the processing of row i is finished. The update process

is as follows. In what follows, we assume (without the loss of generality)
that we have ei, ej , ek ∈ Ei+1

H such that ej = next(ei), ek = next(ej)
(Figure 3). Let ei = (αi, xi), ej = (αj , xj) and ek = (αk, xk). Assume,
without the loss of generality, that xi < x′ + 1 ≤ xj . Since we have
the value α′ at position x′ + 1, the query RMQ(1..x′ + 1) should return
ζ ≥ α′ when we are processing subsequent rows. So, first we check whether
RMQ(1..x′ + 1) ≥ α′ on the current Ei+1

H . It is clear that if the answer
is positive, we don’t need to do any update at all. Otherwise, we have, at
position xj or before it (off course after xi) a higher value α′. So we insert
a new element (αj , x

′) to Ei+1
H , because up to x′ we have no change in

the RMQ answers. Now we have to change ej = (αj , xj). But this change
may be influenced by ek = (αk, xk) as follows. We have two cases.

Case 1.a: αk = α′. In this case, we just need to delete ej because ek =
(αk = α′, xk) has already taken into account the updated value α′ at
position x′ + 1 ≤ xk (Figure 4).

... → (αi, xi) → (αj , x′) → (αk = α′, xk) → ...

Fig. 4. Updated EH for Case 1.a

Case 1.b: αk > α′. In this case, ek.V alue is greater than the updated
value at position x′ + 1 ≤ xj . So it is clear that up to position xj , we
have α′ as the highest value and hence we need to update ej such that
ej .value = α′ (Figure 5).

... → (αi, xi) → (αj , x′) → (α′, xj) → (αk, xk) → ...

Fig. 5. Updated EH for Case 1.b

9

So far we have discussed the algorithm without analyzing the running
time. Theorem 3 below reports the running time of the Algorithm LCS-II.

Theorem 3. LCS-II solves Problem LCS in O(R log log n) time.

Proof. It is clear that for each (i, j) ∈ M we do the following 3 steps.

1: Perform appropriate range maxima query using Algorithm 2
2: Compute T [i, j] from the result of Step 1
3: Update EH based on T [i, j]

It is easy to see that Step 1, i.e., Algorithm 2 requires O(log log n)
time. Step 2 requires O(1) time. In Step 3 we perform the update. Here,
we first check, using Algorithm 2, whether any update is indeed required.
This, again, requires O(log log n) time. Finally, if update is required,
then we need to perform constant number of insertion and/or deletion
requiring, again, O(log log n) time. So, for each (i, j) ∈ M the compu-
tation effort spent is O(log log n). Therefore, Algorithm LCS-II requires
O(R log log n) time to compute LCS. �

4 Conclusion

In this paper, we have studied the classic and much studied LCS problem
for two strings. Problem LCS has been the focus of extensive research
from both theoretical and practical point of view. Using some new ideas,
we have presented an O(R log log n) time algorithm to solve the problem
where R is the total number of ordered pairs of positions at which the
two strings match. Although, R = O(n2), there are large number of
applications for which we have R ∼ n. Typical of such applications include
finding the longest ascending subsequence of a permutation of integers
from 1 to n, finding a maximum cardinality linearly ordered subset of
some finite collection of vectors in 2-space etc (for more details see [10]
and references therein). So in these situations our algorithm would exhibit
an almost linear O(n log log n) behavior. The techniques we have used to
develop our algorithm is new and, we believe, of independent interest.
We believe a number of interesting issues remain as candidates for future
research as follows.

1. LCS problem for more than two strings have extensive applications
e.g. in molecular biology. It would be interesting to see whether our
techniques can be extended for LCS problems involving more than
two strings or variants thereof (e.g. constrained LCS [20, 4, 3], rigid
LCS [13]), motivated by practical applications in molecular biology.

10

2. We have implicitly presented an algorithm for the range maxima
query problem. Our algorithm allows restricted dynamic updates and
considers a restricted sets of queries. It would be interesting to see
whether we can lift the restrictions and/or improve the query and
pre-processing time. Moreover, we believe that this algorithm could
be used in many other problems requiring similar sort of restricted
updates and queries.

References

1. Stephen F. Altschul, Warren Gish, Webb Miller, Eugene W. Meyers, and David J.
Lipman. Basic local alignment search tool. Journal of Molecular Biology,
215(3):403–410, 1990.

2. V.L. Arlazarov, E.A. Dinic, M.A. Kronrod, and I.A. Faradzev. On economic con-
struction of the transitive closure of a directed graph (english translation). Soviet
Math. Dokl., 11:1209–1210, 1975.

3. Abdullah N. Arslan and Ömer Egecioglu. Algorithms for the constrained longest
common subsequence problems. In Stringology, pages 24–32, 2004.

4. Abdullah N. Arslan and Ömer Egecioglu. Algorithms for the constrained longest
common subsequence problems. Int. J. Found. Comput. Sci., 16(6):1099–1109,
2005.

5. Michael A. Bender and Martin Farach-Colton. The lca problem revisited. In
LATIN, pages 88–94, 2000.

6. Lasse Bergroth, Harri Hakonen, and Timo Raita. A survey of longest common
subsequence algorithms. In SPIRE, pages 39–48, 2000.

7. H. Gabow, J. Bentley, and R. Tarjan. Scaling and related techniques for geometry
problems. In STOC, pages 135–143, 1984.

8. F. Hadlock. Minimum detour methods for string or sequence comparison. Con-
gressus Numerantium, 61:263–274, 1988.

9. Daniel S. Hirschberg. Algorithms for the longest common subsequence problem.
J. ACM, 24(4):664–675, 1977.

10. James W. Hunt and Thomas G. Szymanski. A fast algorithm for computing longest
subsequences. Commun. ACM, 20(5):350–353, 1977.

11. Tao Jiang and Ming Li. On the approximation of shortest common supersequences
and longest common subsequences. SIAM Journal of Computing, 24(5):1122–1139,
1995.

12. V.I. Levenshtein. Binary codes capable of correcting deletions, insertions, and
reversals. Problems in Information Transmission, 1:8–17, 1965.

13. Bin Ma and Kaizhong Zhang. On the longest common rigid subsequence problem.
In CPM, pages 11–20, 2005.

14. David Maier. The complexity of some problems on subsequences and superse-
quences. Journal of the ACM, 25(2):322–336, 1978.

15. William J. Masek and Mike Paterson. A faster algorithm computing string edit
distances. J. Comput. Syst. Sci., 20(1):18–31, 1980.

16. Eugene W. Myers. An o(nd) difference algorithm and its variations. Algorithmica,
1(2):251–266, 1986.

17. Narao Nakatsu, Yahiko Kambayashi, and Shuzo Yajima. A longest common sub-
sequence algorithm suitable for similar text strings. Acta Inf., 18:171–179, 1982.

11

18. W.R. Pearson and D.J. Lipman. Improved tools for biological sequence comparison.
Proceedings of National Academy of Science, USA, 85:2444–2448, 1988.

19. M. Sohel Rahman and Costas S. Iliopoulos. Algorithms for computing variants of
the longest common subsequence problem. In ISAAC, pages 399–408, 2006.

20. Yin-Te Tsai. The constrained longest common subsequence problem. Inf. Process.
Lett., 88(4):173–176, 2003.

21. P. van Emde Boas. Preserving order in a forest in less than logarithmic time and
linear space. Information Processing Letters, 6:80–82, 1977.

22. Robert A. Wagner and Michael J. Fischer. The string-to-string correction problem.
J. ACM, 21(1):168–173, 1974.

