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Abstract 
One of the programming problems in the 2002 Pacific Northwest regional ACM  ICPC contest provides a new way to 
teach backtracking and also provides a very powerful example of a forward-looking bounding function.  This article 
presents the problem, the bounding function, and timing information of implementations with and without the bounding 
function.  It also provides the URL for access to the programs themselves. 
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1.  The Problem 
In 1985, Dean Clark proposed a problem in the American 
Mathematical Monthly regarding permutations of numbers 
on the face of a clock [1].  This was picked up by Martin 
Gardner and presented to a wider audience in his puzzle 
column in Isaac Asimov’s Science Fiction Magazine for 
August of 1986.  Here is his statement of the problem. 

Now for a curious little combinatorial puzzle involving 
the twelve numbers on the face of a clock.  Can you 
rearrange the numbers (keeping them in a circle) so no 
triplet of adjacent numbers has a sum higher than 21?  This 
is the smallest value that the highest sum of a triplet can 
have.  

I know of no procedure for finding such a permutation, 
but there must be a way to write a computer program that 
will print all such permutations in a reasonable time [2]. 

This prompted one of the authors (Timothy Rolfe) to 
do exactly that, reporting the generation of such a computer 
program (using backtracking to bound the time required) in 
Mathematics and Computer Education [3], and more 
recently (thanks to its inclusion in the 2002 Pacific 
Northwest regional contest [4] for the ACM International 
Collegiate Programming Contest (ICPC) [5]) in Dr. Dobb’s 
Journal [6]. 

In response to that article, the other author (Paul 
Purdom) provided a forward bound that greatly reduces the 
time required to solve the problem, and especially the time 
required to discover that there are no solutions for a 
maximum triplet sum less than 21. 
 
2.  Backtracking and Bounding 
The problem may be useful in teaching backtracking, 
giving the Eight Queens a royal rest.  It shows both the 
power and the limitation of a pure backtracking approach.  

One may view the problem as the examination of all 
permutations, counting up the ones that meet the condition.  
As a contest problem, this led some contestants to blithely 
invoke the C++ Standard Template Library function 
next_permutation — and exceed the time limit when they 
ran their program with the judges’ input data.  Recursive 
algorithms easily generate permutations and the 
backtracking can be embedded within the permutation 
algorithm itself.  Such an implementation can detect the 
point at which a triplet is generated whose sum exceeds the 
limit and prune the decision tree there.  This greatly 
reduces the processing required to find all valid clock 
faces.  This implementation, though, has the disadvantage 
of continuing down the decision tree for a branch that 
cannot generate a solution because the numbers at the front 
of the permutation are too small (and thus those at the end 
are too large to produce small sums). 

Suppose one assigned numbers to the clock face for 
positions 0 to k, but has not yet assigned numbers for 
positions k+1 to N–1.  Here is the situation:  

 
X[k-1]      X[k]      X[k+1]    ...    X[N-1]       X[0]      X[1] 
known   known   unknown  ...  unknown   known   known 
 
The sum of each three numbers should be no more than 
MaxSum, and there are N–k+1 groups of unknown sums-
of-three. 

Let R be the sum of the numbers not yet assigned.  
Then X[k–1] appears in one group-of-three, X[k] appears in 
two groups, each X[i] contributing to R appears in three 
groups, X[0] appears in two groups, and X[1] appears in 
one group.  Thus, it is possible to obtain a solution from a 
given front end to the permutation if the following 
condition holds: 
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(N–k+1) MaxSum >= X[k–1] + 2 X[k] + 3 R + 2 X[0] + X[1] 
 
This bound is especially effective in problems for which 
there are few valid solutions. 

The bounded backtracking implementation was 
programmed both in C and in Java [7].  The following table 
shows the results of running the Java implementation of the 
backtracking algorithm both without and with the forward 
bound, and capturing both the number of function calls and 
the elapsed time.  In each case, the MaxSum used is the 
smallest one that has any valid permutations.  Note that 
each valid permutation has a mirror image that is also a 
valid permutation.  The program only counts unique 
permutations, discarding those equivalent as mirror images. 

The program was run on Xeon processors in DELL 
quad-processor computers under the DELL-installed Red 
Hat Linux operating system.  The program was compiled 

and run in the Java™ 2 Runtime Environment, Standard 
Edition (build 1.4.2_01-b06).  While the Xeon is rated as 
3.0 GHz, that is the result of hyperthreading two 1.5 GHz 
processors, so that the Linux system sees those two 
processors as running at 1.5 GHz. 
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N MaxSum # Solns Calls w/o Calls w Sec w/o Sec w 

12 21 261 187364 17842 0.02825 0.011 

13 23 2842 1731873 226800 0.18325 0.092 

14 24 144 5194742 117625 0.569 0.034 

15 25 4 14779282 20009 1.75975 0.011 

16 27 70 2.11E+08 939411 24.3368 0.248 

17 29 41519 2.71E+09 26310531 304.8474 6.133 

18 30 2238 9.15E+09 5936212 1131.248 1.71 

19 32 113532 1.47E+11 2.88E+08 17779.31 84.69 

20 33 506 5.28E+11 44061168 69967.83 13.847 
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