
Reviewed Papers

inroads – The SIGCSE Bulletin 83 Volume 36, Number 4, 2004 December

An Alternative Problem for Backtracking and Bounding

Timothy J. Rolfe
Computer Science Department
Eastern Washington University

Cheney, Washington 99004-2412 USA
Timothy.Rolfe@ewu.edu

Paul W. Purdom, Jr.
Computer Science Department
Indiana University, Bloomington

Bloomington, Indiana 47405-7104 USA
pwp@cs.indiana.edu

Abstract
One of the programming problems in the 2002 Pacific Northwest regional ACM ICPC contest provides a new way to
teach backtracking and also provides a very powerful example of a forward-looking bounding function. This article
presents the problem, the bounding function, and timing information of implementations with and without the bounding
function. It also provides the URL for access to the programs themselves.

Keywords: Backtracking, bounding function, permutation

1. The Problem
In 1985, Dean Clark proposed a problem in the American
Mathematical Monthly regarding permutations of numbers
on the face of a clock [1]. This was picked up by Martin
Gardner and presented to a wider audience in his puzzle
column in Isaac Asimov’s Science Fiction Magazine for
August of 1986. Here is his statement of the problem.

Now for a curious little combinatorial puzzle involving
the twelve numbers on the face of a clock. Can you
rearrange the numbers (keeping them in a circle) so no
triplet of adjacent numbers has a sum higher than 21? This
is the smallest value that the highest sum of a triplet can
have.

I know of no procedure for finding such a permutation,
but there must be a way to write a computer program that
will print all such permutations in a reasonable time [2].

This prompted one of the authors (Timothy Rolfe) to
do exactly that, reporting the generation of such a computer
program (using backtracking to bound the time required) in
Mathematics and Computer Education [3], and more
recently (thanks to its inclusion in the 2002 Pacific
Northwest regional contest [4] for the ACM International
Collegiate Programming Contest (ICPC) [5]) in Dr. Dobb’s
Journal [6].

In response to that article, the other author (Paul
Purdom) provided a forward bound that greatly reduces the
time required to solve the problem, and especially the time
required to discover that there are no solutions for a
maximum triplet sum less than 21.

2. Backtracking and Bounding
The problem may be useful in teaching backtracking,
giving the Eight Queens a royal rest. It shows both the
power and the limitation of a pure backtracking approach.

One may view the problem as the examination of all
permutations, counting up the ones that meet the condition.
As a contest problem, this led some contestants to blithely
invoke the C++ Standard Template Library function
next_permutation — and exceed the time limit when they
ran their program with the judges’ input data. Recursive
algorithms easily generate permutations and the
backtracking can be embedded within the permutation
algorithm itself. Such an implementation can detect the
point at which a triplet is generated whose sum exceeds the
limit and prune the decision tree there. This greatly
reduces the processing required to find all valid clock
faces. This implementation, though, has the disadvantage
of continuing down the decision tree for a branch that
cannot generate a solution because the numbers at the front
of the permutation are too small (and thus those at the end
are too large to produce small sums).

Suppose one assigned numbers to the clock face for
positions 0 to k, but has not yet assigned numbers for
positions k+1 to N–1. Here is the situation:

X[k-1] X[k] X[k+1] ... X[N-1] X[0] X[1]
known known unknown ... unknown known known

The sum of each three numbers should be no more than
MaxSum, and there are N–k+1 groups of unknown sums-
of-three.

Let R be the sum of the numbers not yet assigned.
Then X[k–1] appears in one group-of-three, X[k] appears in
two groups, each X[i] contributing to R appears in three
groups, X[0] appears in two groups, and X[1] appears in
one group. Thus, it is possible to obtain a solution from a
given front end to the permutation if the following
condition holds:

Reviewed Papers

inroads – The SIGCSE Bulletin 84 Volume 36, Number 4, 2004 December

(N–k+1) MaxSum >= X[k–1] + 2 X[k] + 3 R + 2 X[0] + X[1]

This bound is especially effective in problems for which
there are few valid solutions.

The bounded backtracking implementation was
programmed both in C and in Java [7]. The following table
shows the results of running the Java implementation of the
backtracking algorithm both without and with the forward
bound, and capturing both the number of function calls and
the elapsed time. In each case, the MaxSum used is the
smallest one that has any valid permutations. Note that
each valid permutation has a mirror image that is also a
valid permutation. The program only counts unique
permutations, discarding those equivalent as mirror images.

The program was run on Xeon processors in DELL
quad-processor computers under the DELL-installed Red
Hat Linux operating system. The program was compiled

and run in the Java™ 2 Runtime Environment, Standard
Edition (build 1.4.2_01-b06). While the Xeon is rated as
3.0 GHz, that is the result of hyperthreading two 1.5 GHz
processors, so that the Linux system sees those two
processors as running at 1.5 GHz.

Acknowledgements
The programs were run on computers acquired as part of
the “Technology Initiative for the New Economy” grant by
the federal government to Eastern Washington University
that, among other things, provided a parallel and distributed
processing resource—which these computers do admirably
well! Each DELL is effectively an eight-processor SMP,
so that among the five machines there are 40 processors
available for distributed processing.

N MaxSum # Solns Calls w/o Calls w Sec w/o Sec w

12 21 261 187364 17842 0.02825 0.011

13 23 2842 1731873 226800 0.18325 0.092

14 24 144 5194742 117625 0.569 0.034

15 25 4 14779282 20009 1.75975 0.011

16 27 70 2.11E+08 939411 24.3368 0.248

17 29 41519 2.71E+09 26310531 304.8474 6.133

18 30 2238 9.15E+09 5936212 1131.248 1.71

19 32 113532 1.47E+11 2.88E+08 17779.31 84.69

20 33 506 5.28E+11 44061168 69967.83 13.847

References
[1] Dean S. Clark, “A Combinatorial Theorem on Circulant Matrices”, Amer. Math. Monthly, Vol. 92, No. 10 (December 1985), pp. 725

ff. For those whose institutions are participants in JSTOR (Journal STORage), http://www.jstor.org/browse/#Mathematics provides
access to this article — select American Mathematical Monthly, navigate to Vol. 92, No. 10, and search for “Clark”. He later
coauthored a paper on n-entry circular permutations. Dean S. Clark and Stanford S. Bonan, “Experimental Gambling System”,
Mathematics Magazine, Vol. 60, No. 4 (October 1987), pp. 217 ff. Again, http://www.jstor.org/browse/#Mathematics provides access
— select Mathematics Magazine, navigate to Vol. 60, No. 4, then search for “Clark”.

[2] Martin Gardner, “987654321”, Isaac Asimov’s Science Fiction Magazine, August 1986, p. 100.
[3] Timothy J. Rolfe, “Recurse Around the Clock”, Mathematics and Computer Education, Vol. 21, No. 2 (Spring, 1987), pp. 98-104.
[4] See Problem E in http://www.acmcontest-pacnw.org/ProblemSet/2002/forweb.zip
[5] See http://icpc.baylor.edu/icpc/
[6] Timothy Rolfe, “Backtracking Algorithms”, Dr. Dobb’s Journal, Vol. 29, No. 5 (May 2004), pp. 48, 50-51.
[7] These implementations (which were developed as the instructor’s solution when the problem was given as an assignment in an

Algorithms course) are available through the following URL: http://penguin.ewu.edu/~trolfe/BoundClock/Implementation.html

