
On the All-Pairs-Shortest-Path Problem

RAIMUND SEIDEL*

Computer Science Division

University of California, Berkeley

Berkeley CA 94720

Abstract

The following algorithm solves the distance version of the all-pairs-shortest-path problem for undirected,

unweighed n-vertex graphs in time O(&f(rJ) log n), where M(n) denotes the time necessary to multiply

two n x n matrices of small integers (which is currently known to be o(n2376)):

Input: n x n O-1 matrix A, the adjacency matrix of undirected, connected graph G’

Output: n x n integer matrix D, with dij the length of a shortest path joining vertices i and j in G

function APD(A : n x n O-1 matrix) : n x n integer matrix

let Z=A. A

let B be an n x n O-1 matrix, where bij = 1 iff i # j and (aij = 1 or ~tj > O)

if bij = 1 for all i # j then return n x n matrix D = 2B – A

let T = APD(B)

let X=T. A

{

2tij if Zij ~ tij . degree(j)
return n x n matrix D, where dij = Zt

ij – 1 if Xij < tij . degree(j)

We also address the problem of actually finding a shortest path between each pair of vertices and present

a randomized algorithm that matches APD() in its simplicity and in its expected running time.

1. Computing All Dktances

In the following let G be an undirected, unweighed,

connected graph with vertex set {1, 2, ..., n} and adja-

cency matrix A, and let dij denote the number of edges

on a shortest path joining vertices i and j in G. In this

section we show that the function APD() computes all

dij correctly within the claimed time bound.

Claim 1 Let Z = A oA. There is a path of length 2 in

G between vertices i and j iff ~ij >0.

Proofi There is a length 2 path joining i and j iff there

is a vertex k adjacent to both i and j, which is exactly

‘he Cme ‘f ‘ij = ~l<k~n aikakj >0- ❑

“Supported by NSF Presidential Young Investigator Award

CCR-9058440. Email address: seidel@cs.berkeley.edu

Permission to oopy without fee all or part of this material is

granted providad that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice ie given

that copying is by permission of the Association for Computing
Machinery. To copy otharwisa, or to republish, raquirae a fee

and/or spacific permission.
24th ANNUAL ACM STOC - 5/92/VICTORIA, B.C., CANADA
@1992 ACM ()+9791-51 2.7/92/0004/074~...$J .50

Let G’ be the simple undirected n-vertex graph obtained

from G by connecting every two vertices i and j by an

edge iff there is a path of length 1 or 2 between i and

j in G. Note that the O-1 matrix B computed in the

algorithm is the adjacency matrix of G’.

G’ is the complete graph iff G has diameter at most 2,

and in that csse dij = 2 if aij = O and dij = 1 if aij = 1,

Thus the algorithm is correct for graphs of diameter at

most 2.

Let tijdenote the length of a shortest path joining i

and j in G’.

Claim 2 For any pair i, j of vertices, dij even implies

d=$J 2tij , and dij odd implies dij = 2tij – 1.

Proof: Observe that if for a pair i, j of vertices dij = 2s

and i = io, il, ..., i2S-l,i2S = j is a shortest path in G,

then i = io, iz, iq, ..., iz~-z, izs = j is a shortest path be-
tween i and j in G’ and has length s. Similarly, if dij =

2s–1 andi= io, il, i2~-3, i28-2, i2S-1 = j is a short-

est path inG, then i = io, i2, iq, . . .,izS_.4,iz*_z,iz8_l =

j is a shortest path between i and j in G1 and has length

s. E!l

/43

Thus after the tij’s have been computed recursively by

APD(B), one only needs to determine the parities of the

dij’s in order to deduce their values from the respective
tij ‘s. How those parities can be determined efficiently

is shown by the following claims, the first of which is

trivial.

Claim 3 Let i and j be a pair of distinct vertices in G.

For any neighbor k of j in G we have dij -1< & 5

dij + 1. Moreover, there exists a neighbor k of j with

d~k = dij – 1.

Claim 4 Let i and j be a pair of dktinct vertices in G.

dij even ~ t~k > tijfor all neighbors k of j in G.

dij odd ~ tik ~ tijfor all neighbors k of j in G, and

tik < tij for some neighbor k of j in G.

Proof: Assume dij = 2s is even. Then, since by the

last claim dih ~ 2s – 1 for any neighbor k of j, Claim 2

implies tik ~ $ = tij. Similarly, if dij = 2s – 1 is odd,
then, since dik ~ 2s for any neighbor k of j, we have

tik~s= i?ij, and dik = 2s – 2 for some neighbor k of

j. But for that neighbor tik = s – 1< s = tijholds. ❑

As a straightforward consequence of Claim 4 we have

Claim 5 dij even iff ~ tik ~ tij s degree,

k neighbor of j

dij odd iff ~ tik < tij . degree.

k neighbor of j

and

The correctness of the ahzorithm APD follows immedi-

ately, since x tik = x
tikakj = ~ij .

k neighbor of j I<k<n

Let ~(n, 6) be the running time of APD when applied

to a graph G with n vertices and of diameter 6. Since

the derived graph G’ clearly has diameter [6/21 we have

~(n, 6) =
{

M(n) + 0(fa2) if6~2,
2ikf(n) + 0(n2) + f(n, [6/21) if ~ > 2}

where M(n) denotes the time to multiply two n x n

matrices. For $> 1 this solves to

f(fa,6)=(2pog261 - 1). M(n) + O(n2 logd).

Since 6 s n– 1 and since Af(n) = C2(n2) this means that

the running time of APD is O(kf(n) log n), which by the

results on fast matrix multiplication by Coppersmith

and Winograd [2] is 0(n2376).

2. Computing All Shortest Paths

Let us now consider the problem of computing for
each pair of vertices in graph G a shortest connecting
path, and not just the length of such a path. Again
we only deal with the case where G is undirected, un-
weighed, and connected, and has vertex set {1, ..., n}.

Note that we cannot compute all those shortest paths

explicitly in o(n3) time, since there are graphs with

Q(n2) pairs of vertices whose connecting paths have
lengths e(n) each. Thus we only compute a data struc-

ture that allows shortest connecting paths to be recon-

structed in time proportional to their lengths. This

data structure will be the so-called “successor” matrix

S, where for each vertex pair i # j the entry sij is a

neighbor k of i that lies on a shortest path from i to j.

Our strategy will be to compute the successor matrix

S from the distance matrix D. In particular, we will

show that computing S from D essentially amounts to

solving three instances of the boolean product witness

matm”z problem, which asks to compute for any given

two n x n O-1 matrices A and B an n x n integer “wit-

ness” matrix W so that

{

some k such that aik = 1 and bk~ = 1, and
‘Wij =

O iff no such k exists.

Now assume that we have distance matrix D and ad-

jacency matrix A of graph G at our disposal, and let i

and j be two vertices with dij = d >0. The entry Sij h

the successor matrix will be some neighbor k of i with

dkj = d – 1. In other words, we want to find

some k such that (ai~ = 1) and (dkj = d – 1).

This means that determining the successors sij for all
vertex pairs i, j with dij = d can be achieved by solving

the boolean product witness matrix problem for A and

B(d), where A is the adjacency matrix of G and B(d) is

the n x n O-1 matrix with b~~ = 1 iff dP” = d – 1. Thus

all entries of the successor matrix S can be found by

solving a boolean product witness matrix problem for

each d, O<d <n.

Of course solving n- 1 instances of this problem is too

expensive. However, it suffices to deal with only three

instances. The key observation is that since dij — 1 s

dkj ~ dij + 1 for any neighbor k of i it suffices to find

some k such that (aik = 1) and (dkj = d–1 (mod 3)).

Thus for each r = O, 1,2 determining the successors

sij for all vertex pairs i, j with dij mod 3 = r can be

achieved by solving the boolean product witness matrix

problem for A and D(r), where D(r) is the n x n O-1

matrix with ~P;) =liffdP”+lmod3=r.

746

Function APSP(A: n x n O-1 matrix): n x n successor matrix

let D:= APD(A)
for each r = 0,1,2 do

let D(’) be the n x n O-1 matrix with d$) = 1 iff dij + 1 mod 3 = r

let W(r) := BPWM(A, d’))

return n x n matrix S, where s~j = wij ,‘p) with p = dij mod 3

Function BPWM(A, 13: n x n O-1 matrices): n x n witness matrix

let W:=–A. B

for each d = 2~ where / = O,..., llogz nl – 1 repeat (3.42. logz nl times

choose d independent random numbers kl, kz, ..., kd, drawn uniformly from {1, ..., n}

let X be an nxd matrix with columns kia.~i and Y a dxn matrix with rows b~,. (l~i~d)

let C=X. Y

for each (i, j) s.t. wij <0 and cij is a witness for (i, ~) do Wij := Cij

foreach (i, j) s.t. wij <0 do Wij := some witness k for (i, j), found by trying each k

return W.

The function APSP above details our algorithm for

finding all shortest paths. For the solution of the three

instances of the boolean product witness matrix prob-

lem it uses the function BPWM, which is also outlined

above and is analyzed in the next section. From that

analysis we can conclude that if two n x n matrices

can be multiplied in time O(nW), then APSP constructs

shortest paths for all pairs of vertices in expected time

O(nw logn) if u >2, and in time 0(n2 log2 n) if w = 2.

3. Witnesses for O-1 Matrix Products

Given two n x n O-1 matrices A and B we say that

index k is a witness for the index pair (i, j) iff aik = 1

and bkj = 1. We say that an n x n integer matrix W’ is

a boolean product witness matrix for A and B iff

{

O if there is no witness for (i, j), andWij =
some witness k for (i, j) otherwise.

Above we give the description of a randomized algo-

rithm that computes a boolean product witness matrix

for A and B in expected time O(nW log n), assuming

that the time necessary to multiply two n x n small

integer matrices is O(n”), with w > 2. (If w = 2, the

expected running time of our algorithm is 0(n2 log2 n).)

We refer to column k of a matrix Z as z.k, to row k

as %k*. The expression A. B denotes the normal matrix

product between A and B.

Let us first argue

witness matrix.

that BPWM correctly computes a

Claim 6 If A and B are n x n O-1 matrices and C’ =

A. B, then for each O ~ i, j ~ n the entry cij counts the

number of witnesses for (i, j).

Proof: Trivial, SinCe Cij = ~l<k<n aikbkj. H
. .

Thus if some entry wij of matrix W in BPWhl is zero,

then there is no witness for pair (i, j). Any initially

negative Wij is explicitly reset to some witness for (i, j).

Since the last for each loop assures that this happens

to every negative wij, BPWM(A, B) indeed returns a

boolean product witness matrix for A and B.

What about the running time of BPWM? For each

d = 24 the body of the big loop is executed O(log n)

times, and each execution involves the multiplication of

an n x d with a d x n matrix plus additional 0(n2) work

(note that testing whether a number is a witness for

(i, j) can be done in constant time). The matrix mul-

tiplication can be performed in time 0(n2&-2) (apply

the O(nW) square matrix mulplication algorithm to d x d

submatrices of A and B in turn) and thus dominates the

running time. It follows that the time necessary to per-

form the entire first for each loop is O(log n) times

~ 0(n2(2’)’’’-2) = 0(n2) ~ 2’(U-2) ,

O<t< [log2 nl OSZ< p0g2 ~1

which is O(nW log n) if w >2 and 0(n2 log2 n) if w = 2.

This is also the expected running time of the entire func-

tion BPWM, if we can show that the expected running

time of the last for each loop is 0(n2), i.e. for each

747

pair (i, j) the expected work is constant. For this it

suffices to prove that for any (i, j) for which a witness

exists, the first for each loop fails to find a witness with

probability at most I/n.

Claim 7 Let A and 1? be n x n O-1 matrices, let S be

a sequence of d integers kl, k2, kd, each between 1

and n, and let matrices X and Y be defined as in the

algorithm BPWM and let C = X . Y.

If for some pair (i, j) exactly one index kA in S is a

witness for (i, j), then cij = kA.

Proof: If k~ is the only index kv in S so that aikV = 1

and bkwj =1! ‘hen cil = ~l<.<dkvaik.bk.j = ‘A. g

Let us now concentrate on some fixed pair (i, j) for

which witnesses exist, say, c of them. The previous

claim implies that if during one of the iterations of the

big for each loop there is exactly one witness for (i, j)

among the randomly chosen numbers kl, kd, then a

witness for (i, j) is found and sssigned to wij.

We now need to argue that it is very unlikely that

this fails to happen. Consider the iterations for which

n/2 ~ cd ~ n holds. The following claim implies that

each of these iterations fails to produce a witness for

(i, j) with probability at most 1 – l/2e. Thus no witness

is produced in all these iterations with probability at

most (1 — l/2e) [3”4210g~’1 ~ l/n, and hence a witness

for (i, j) has to be found in the last for each loop with

probability at most I/n, as claimed.

Claim 8 Let 1 be a set of n balls c of which are colored

crimson. Assume that d times a ball is drawn from 1

uniformly at random and put back, where d satisfies

n/2 s cd s n.

Then the probability that exactly once a crimson ball

was drawn is at least l/2e.

Proof: The desired probability is d~(l - ~)d-l. Since

by the assumptions on d we have $ ~ ~ and – ~ ~ –$

it follows that %(1 — $)d-l ~ +(1 — ~)d-l > $e-l . ❑

4. Discussion

Please note that our algorithms only involve integer

matrices* whose entries are less than n2. Thus the

O(ikf(n) log n) time bound holds for the usual RAM

*For APD it is actually not too hard to come up with a vari-

ant that only uses boolean matrix multiplication (no more than

4 Pogz 61 – 1 of them) plus O (n2 log 6) overhead: use the mod 3

trick of APSP.

model that assumes constant time primitive arithmetic

and comparison operations on integers whose values are

polynomial in n. This is in contrast to previous meth-

ods [15, 14] that solve the all-pairs-shortest-path prob-

lem by emulating so-called “funny matrix multiplica-

tion” (i.e. matrix multiplication over a semiring whose

operations are MIN and +) via ordinary multiplication

of matrices whose entries have representation size not

logarithmic, but superlinear in n. See Pan’s book [13,

Theorems 18.10, 23.6].

The main algorithm APD is somewhat of a curiosity.

It applies to the csse of unweighed, undirected graphs,

but it does not seem to admit ready generalization to

the weighted and/or directed csse.

Algorithm APD owes a lot to work by Galil and

Margalit [8], who were the first to achieve a substan-

tially subcubic bound for a dense version of the all-

pairs-shortest-path problem. They also used the de-

rived graph G’ but then employed a much more com-

plicated method to determine the parities of the dij ‘s.

Initially [8] they had an algorithm for the undirected,

unweighed case with running time 0(n2+wJ3), assum-

ing M(n) = o(nw). In collaboration with Alon [1] they

subsequently altered their approach and improved their

result to 0(nf3+wJJ2), also generalizing it to the case of
directed graphs with edgeweights in {–1, O, +1}.

Alon, Galil, Margalit [1], together with Karger,

Keller, Phillips [11], and Feder, Motwani [3] have to

be credited for the recent resurgence of interest in all-

pairs-shortest-path problems, an area that has seen rel-

atively little action [4, 6, 9, 5] since the classic results

had been established in the early sixties. Alon, Galil,

and Margalit seem to have embarked on a rather com-

prehensive investigation of the entire area and appar-

ently have obtained a number of impressive new results

[7]: in particular, an algorithm that solves the distance

verstion of the all-pairs-shortest-path problem on undi-

rected graphs with integer edge weights between O and

B in time 0(B2M(n) log n);t a randomized algorithm

for the boolean product witness matrix problem similar

to BPWM, although slightly slower, and very recently

also a deterministic algorithm with comparable worst
case running time.

t We shodd point out that APSP can easily be adapted to

compute the successor matrix from the distance matrix also in

this case, adding a multiplicative factor of B2 to its running time.

David Karger [10] has obtained a similar result, but not based on

boolean product witness matrices.

748

References

[1] N. Alon, Z. Galil, and O. Margalit, On the Exponent o~

the All Pairs Shortest Path Problem, Proc. 32nd FOCS

(1991), 569-575.

[2] D. Coppersmith and S. Wkograd, Matrix Multiplica.

tion via Arithmetic Progressions, J. of Symbolic Com-

putation 9 (1990), 251-280.

[3] T. Feder and R. Motwani, Clique Partitions, Graphs

Compression and Speeding-up Algorithm, Proc. STOC

(1991), 123-133.

[4] M. L. Fredman, New Bounds on the Complexity of the

Shortest Path Problem, SIAM J. Comp. 5 (1976), 83-

89.

[5] M. L. Fredman and R. E. Tarjan, Fibonacci Heaps

and thier Uses in Improved Network Optimization Al-

gorithms, JACM (1987), 596-615.

[6] D. B. Johnson, Ejjicient Algorithms for Shortest Path~

in Sparse Networks, JACM (1977), 1-13.

[7] Z. Galil, Private Communication.

[8] Z. Galil and O. Margalit, On the Exponent of the All

Pairs Shortest Path Problem, Manuscript, April 1991.

[9] H. N. Gabow, Scaling Algorithms for Network Prob-

lems, J. Comput. System Sci. 31 (1985), 148-168.

[10] D. R. Karger, Private Communication.

[11] D, R, Karger, D. Keller, and S, J. Phillips, Finding

the Hidden Path: Time Bounds for AU-Pairs Shortest

Paths, Proc. 32nd FOCS (1991), 560-568.

[12] C. C. McGeoch, Finding Shortest Paths with the Opti-

mal Subgraph, Manuscript, 1992.

[13] V. Pan, How to Multiply Matrices Faster,

Springer Lecture Notes in Computer Science 179

(1984).

[14] F. Romani, Shortest-Path Problem is not Harder than

Matrix Multiplication, IPL 11 (1980) 134-136.

[15] G. Yuval, An Algorithm for Finding All Shortest Paths
281 Infinite-precision Multiplications, IPL 4Using N

(1976) 155-156.

749

