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Abstract:
This’' paper considers the computation of matrix chain products
of the form MI X MZX ... M | If the matrices are of different
n-1.

dimensions, the order in which the product is computed affects the

number of operations. An optimum drder is an order which minimizes
the total number of operations. We present some theorems about

an optimum order of computing the matrices. Based on these
theorems, an O(n log n) algorithm for finding an optimum order is

presented in part IlI.
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1. l_n!_rg)_dgction

Consider the evaluation of the product of n-1 malrices

M =M XM,X e eXM_ (1)

2 -1

where Mi isa w, X w_lr1 matrix, Since matrix multiplication satisfies
1 1

the associative law, the final result M in (1) is the same for all orders
of multiplying the matrices. However, the order of multiplication
greatly affects the total number of operations to evaluate M . The
problem is to find an optimum order of multiplying the matrices such
that the total number of operations is minimized. Here, we assume that
the number of operations to multiply a pxXq matrix by a q X r matrix
is pqr.,

In [1][7] ,» a dynamic programming algorithm is used to find an
optimum order. The algorithm needs O(ns) time and O(nz) space. Inl2],
Chandra proposed a heuristic algorithm to find an order of computation which
requires no more than ZTO operations where TO is the total number of opera-
tions to evaluate (1) in an optimum order. This heuristic algorithm needs
only O(n) time. Chin [3] proposed an improved heuristic algorithm to give an
order of computation which requires no more than 1. 25 TO . This improved
heuristic algorithm also needs only O(n) time.

In this paper we first transform the matrix chain product Problem into
a problem in graph theory - the problem of partitioning a convex polygon into
non-intersecting triangles, see [91[10][11][12], then we state several theo-
rems about the optimum partitioning problem. Based on these theorems, an

O(n log n) algorithm for finding an optimum partition is developed.



2. Partitioning a convex polygon

Given an n- sided convex polygon, such as the hexagon showni n
Fig. l,thenumber of ways to partition the polygon into (n-2) triangles
by non-intersecting diagonals is the Catalan numbers (see for example,
Gould [8]). Thus, there are 2 ways to partition a convex quadrilateral,
5 ways to partition a convex pentagon, and 14 ways to partition a convex
hexagon.

Let every vertex V.1 of the polygon have a positive weight vlv We
can define the cost of a given partition as follows: The cost of a triangle
is the product of the weights of the three vertices, and the cost of parti-
tioning a polygon is the sum of the costs of all its triangles. For example,

the cost of the partition of the hexagon in Fig. | is

W1W2W3 + W1W3w6 + W3W4W6 + W4W5W6' (2)




If we erase the diagonal from vV, to V() andreplace it by the diagonal

from V1 to V4 , then the cost of the new partition will be

WIWoWat wywgwy P W W Wt wde W (3)

We will prove that an order of-multiplying (n- 1) matrices corre -
sponds to a partition of a convex polygon with n sides. The cost of the
partition is the total number of operations needed in multiplying the
matrices. For brevity, we shall use n-gon to mean a convex polygon
with n sides, and the partition of an n-gon to mean the partitioning of an
n-gon into (n-2) non-intersecting triangles.

For any n-gon, one side of the n-gon will be considered to be
its base, and will usually be drawn horizontally at the bottom such as
the side Vl-V() in Fig. 1. This side will be called the base, all other
sides are considered in a clockwise way. Thus, VI-VZ is the first
side, VZ—V3 the second side,. . . , and VS-V6 the fifth side.

The first side represents the first matrix in the matrix chain and
the base represents the final result M in (1). The dimensions of a matrix
are the two weights associated with the two end vertices of the side. Since
the adjacent matrices are compatible, the dimensions w \(wz,w2><w3,

1
LW x w_ can be written inside the vertices as w , bree s W . The
n-1 n 1 n
diagonals arc the partial products. A partition of ann-goncorresponds
to an alphabetic tree of n-l leaves or the parenthesis problem of n-I

symbols (see, for example, Gardner [6]). It is easy to see the one-to-

one correspondence between the multiplication of n-l matrices to either



the alphabetic binary tree or the parenthesis problem of n-; symbols.

Here, we establish the correspondence between the matrix-chain product

and the partition of a convex polygon directly.

Lemma 1. Any order of multiplying n-l matrices corresponds to a

partition of an n-gon.

Proof. We shall use induction on the number of matrices. For two

matrices of dimensions WIXWZ, WX W, there is only one way of multi -

plication, this corresponds to a triangle where no further partition is
required. The total number of operations in multiplication is W]WZW3'
the product of the three weights of the vertices. The resulting matrix has

dimension w, X W For three matrices, the two orders of multiplication

correspond to the two ways of parti-

(MlxMz) X M, and MIX(MZXM

3 3)

tioning a 4-gon. Assume that this lemma is true for k matrices where

k €n-2, and we now consider n-l matrices. The n-gon is shown in

Fig. 2.

Vn-l




Let the order of multiplication be represented by

)

1

M :(M XM x-onXM )X(M x.o-xM
1 2 p 1 P n

i.e,, the final matrix is obtained by multiplying a matrix of dimension

(w 1>< wp) and a matrix of dimension (prwn). Then in the partition of the
n-gon, we let the triangle with vertices V_1 and Vn have the third vertex VP_

The polygon Vl-VZ-..- -V is a convex polygon of p sides with base Vl-VP
P

and its partition corresponds to an order of multiplying matrices Ml”"’Mp-l’
giving a matrix of dimension wlx V\f: Similarly, the partition of the polygon

vV -V - - V withbase V -V corresponds to an order of multiplying
p ptl .. n P n

matrices M ,...,Mrl 1, giving a matrix of dimension WPXWn. Hence the
P
triangle VlV \Y with base Vl-Vn represents the multiplication of the two
pn

partial products, giving the final matrix of dimension wlx'r\]x/.l

Lemtna 2. The minimum number of operations to evaluate the following

matrix chain products are identical,

M. XM, X -:eo XM X M
1 2 n

M XM, X« XM X M
n 1 n

che X M
MZKM3>< YMnIX n

where M_lhas dimension w, X Wi and w =W . Note thati n the
i

n+l ’
first matrix chain, the resulting matrix is of dimension w, by Wr'l,ln
the last matrix chain, the resulting matrix is of dimcnsionw2 by W

But in all the cases, the total number of operations in the optimum orders

of multiplication is thesame.



Proof. The cyclic permutations of the n-l matrices all correspond to
the same n-gon andthushave | he same optimum partitions. W

(This Lemma was obtained independently in [ 4] with a long proof, )

From now on, we shall concentrate only on the partitioning
problem.

The diagonals inside the polygon are called arcs. Thus, one
easily verifies inductively that every partition consists of n-2 triangles

formed by n-3 arcs and n sides.
In a partition of an n-gon, the degree of avertexis themunber

of arcs incident on the vertex plus two (since there are two sides

incident on every vertex).

Lemma 3. In any partition of an n-gon, n 2 4, there are at least two

triangles, each having a vertex of degree two. (For example, in Fig. 1, the
i v i i vV, v.V

triangle V1V2V3 has vertex 2 with degree 2 and the triangle 4V5Y¢ has

vertex V 5 with degree 2. ) (See also [5] )

Proof. In any partition of an n-gon, there are n- 2 non-intersecting

triangles formed by n-3 arcs and n sides. And for any n 2 4, no
triangle can be formed by 3 sides. Let x be the number of triangles
with two sides and one arc, y be the number of trianpgleswithoneside
andtwo arcsg, and z be the numbher o f trianples wit h thyee aves,

Since an arc is’'used in two triangles, we have

X t 2y t 3z = 2(n-3) . (4)



Since the polygon has n sides, we have
2x +y = n . (5)

From (4) and (5), we get
3x = 3z + 6

Since z2 0, we have x 22 . #§

Lemma 4. Let P and P’ both be n-gons where the corresponding
weights of the vertices satisfy Wi SW.I , then the cost of an optimum parti-

tion of P is less than or equal to the cost of an optimum partition of P’

Proof. Omitted, W

If we use C(WI'WZ'W3’ ...»wWk) to mean the minimum cost of
partitioning the k-gon with weights wi optimally, Lemma 4 can be
stated as

YW e sCtw./, w!,.. Y < w’
C(w1 Wy ...wk) (‘(wl w, .,wk)lfwi W

We say that two vertices arc connected in an optimum partition

if the two vertices are connected by an arc °F 'f the two vertices are

adjacent to the same side.



In the rest of the paper, we shall use Vl’VZ’ C Vn to denote

vertices which are ordered according to their weights, i. e. WlS W2-<' -, S Wn’

To facilitate the presentation, we introduce a tie-breaking rule for vertices

of equal weights,
If there are two or more vertices with weights equal to the smallest

weight W, we can arbitrarily choose one of these vertices to be the vertex

Vl . Once the vertex V1 is chosen, further ties in equal weights are resolved

by regarding the vertex which is closer to V1 in the clockwise direction to be
of less weight. With this tie-breaking rule, we can unambiguously label the

vertices Vl'VZ’ C e Vn for each choice of V A vertex Vi is said to be

1’

smaller than another vertegi. , denoted by1V_<V_ , either if \iv' C vJv or if
J
w.1 =w. and i< j. We say that Vi is the smallest vertex in a subpolygon
3
if it is smaller than any other vertices in the subpolygon.
After the vertices are labeled, we define an arc Vi—VJ. to be less than
another arc V -V
P q
if min(i, j) < min(p, q)
min(i, j) = min(p, q)
or
max(i, j) < max(p, q)
(For example, the arc V3-V9is less than the arc V4-V5. ) Every partition of
an n-gon has n-3 arcs which can be sorted from the smallest to the largest

into an ordered sequence of arcs, i.e., each partition is associated with a

unique ordered sequence of arcs. We define a partition P to be lexicographi-

cally less than a partition Q if the ordered sequence of arcs associated with

P is lexicographically less than that associated with Q.



When there is more than one optimum partition, we use the,

! -optimum partition (i. e., lexicographically-optirnum partition) to mean

the lexicographically smallest optimum partition, and use an optimum parti-

tion to mean some partition of minimum cost.

We shall use V ’Vb"" to denote vertices which are unordered
a

in weights, and T__k to denote the product of the weights of any three
1]

vertices V., V.and V, .
i ) k

Theorem 1. For every way of choosing Vl'VZ"" (as prescribed), there

is always an optimum partition containing VI -V2 and VI-V3. (Here, Vl-V2

and V1 -V_ may be either arcs or sides. )

3

Proof: The proof is by induction. For the optimum partitions of a triangle

and a 4-gon, the theorem is true. Assume that the theorem is true for all

k-gons (3 £ k< n- 1) and consider the optimum partitions of an n-gon,

From Lemma 3, in any optimum partition, we can find at least two
vertices having degree two. Call these two vertices Vi and \/J . We can
divide this into two cases.

(i) One of the two vertices Vi (or \6.) is not V,» VZ or V3 in some optimum
partition of the n-gon. In this case, we can remove the vertex Vi with
its two sides and obtain an (n-lI)-gon. In this (n-1)-gon, V1, VZ’ V3
are the three vertices with smallest weights. By the induction assump-

tion, V1 is connected to both V 2 and V3 in an optimum partition.

10



(ii) Consider the complementary case of (i), in all the optimum partitions of

the n-gon, all the vertices with degree two are from the set {V_,V

1 2'V3}'

(In this case, there will be at most three vertices with degree two in every
optimum partition. ) We have the following three subcascs:

(a) Vi = V2 and Vj =V3 in some optimum partition of the n-gon,

i.e., both V2 and V3 have degree two simultaneously, In this
case, we first remove V2 with its two sides and form an (n-1)-gon.
By the induction assumption, VI, V3 must be connected in some opti-

mum partition, If Vl-V3 appears as an arc, it reduces to (i). So

Vl-V3 must appear as a side of the (n-1)-gon, and reattaching VZ to

the (n-1)-gon shows that either Vl’VZ and V3 are mutually adjacent

or V1—V3 is a side of the n-gon. In the former case, the proof is

complete, so we assume that VI-V3 is a side of the n-gon. Simi-

larly, we can remove V3 with its two sides and show that Vl’ V2

are connected by a side of the n-gon.

(b) V1 = VI and Vj :V‘2 in some optimum partition of the n-gon,

i.e., VI and V2 both have degree two simultaneously. In this

case, we can first remove V1 and form an (n-1)-gon where V2, V3,

V4 are the three vertices with smallest weights. By the induction

assumption, V2 is connected to both V3 and V4 in an optimum

partition. If VZ-V3 or VZ-V4 appears as an arc, it reduces to (i).

Hence, V-V _ and VZ-V must both be sides of the n-gon. Simi-

2 3 4

larly, we can remove V_ with its two sides and form an (n-1)-gon

2

where Vl’ 3 V4 are the three vertices with smallest weights.

11



Again, VI must be connected to V3 and V4 by sides of the n-gon.

But for any n-gon with n = 5, it is impossible to have V3 and V‘1

both adjacent to VI and V2 at the same time, i.e., Vland V2

cannot both have degree two in an optimum partition of any n-gon

with n 2 5.

(c) v. = Vl' v.J = V3 in some optimum partition of the n-gon. BY

argument similar to (b), we can show that V2 must be adjacent

to VI and V3 in the n-gon. The situation is as shown in Fig. 3(a).

Then the partition in Fig. 3(b) is cheaper because

T123= Tizg

VW AW W, W W)
and C(Wl'wq' va,wt,Wx,wp,w:,’)SC(wz,wq Wy ¢ Ve Vo V3

according to Lemma 4.

Fig. 3
Corollary 1. For every way of choosing VI, VZ" .. (as prescribed), the
£ -optimum partition always contains Vl-V2 and Vl—V3.

Proof: It follows from Theorem 1 and the definition of the £ -optimum

partition. W

12



always cxist in the £ -optimum parti-

Once we know Vl-V2 and VI —V3

tion, we can use this fact recursively. Hence, in finding the £ -optimum

partition of a given polygon, we can decompose it into subpolygons by joining

the smallest vertex with the second smallest and third smallest vertices

repeatedly, until each of these subpolygons has the property that its smallest

vertex is adjacent to both its second smallest and the third smallest vertices.
A polygon having VI adjacent to V2 and V3 by sides will be called

a basic polygon.

Theorem 2. A necessary but not sufficient condition for V2—V3 to exist in an

optimum partition of a basic polygon is

T S

Furthermore, if VZ-V3 is not present in the f/ -optimum partition,

then VI'V4 are always connected in the £ -optimum partition.

Proof. |If VZ’V3 are not connected in the { -optimum partition of a basic

polygon, the degree of V1 is greater than or equal to 3. Let Vp be a vertex

in the polygon and V1, Vp are connected in the £ -optimum partition. V4 is

either in the subpolygon containing V1, V2 and Vp or in the subpolygon con-

taining VI, V3 and V . In either case, V4 will be the third smallest vertex
P

in the subpolygon. From Corollary 1, VI, V4 are connected in the £ -optimum
partition of the subpolygon and it also follows that Vl.V4 are connected in the

£ -optimum partition of the basic polygon.

13



If VZ'V are connected in an optimum partition, then we have an

(n-1)-gon where vV, is the smallest vertex and V4 is the third smallest

L3

vertex. By Theorem 1, there exists an optimum partition of the (n-1)-gon

in which V._, V4 are connected. Thus by induction on n, we can assume

2

in the basic polygon as shown in Fig. 4(a).

that V , is adjacent to V2

4

Fig. 4

The cost of the partition in Fig. 4(a) is

T123oc(w2'w4l-olth""’w3) (7)

And the cost of the partition in Fig. 4(b) is

W;---'W3) (8)

+ ’ e e 0y
T C(w1 W, ¢

124

14



According to Lemma 4,

w_) . (9)

C(wl,w L, W w,) < Clw Wereo oy Wy

4, 0@y t,...' 3 2’W4'.--’ t'
Since the weights of the vertices between V4 and V3in the clockwise direction
are all greater than or equal to Wy the difference between RHS and LHS

of (9) is at least .

Tosas~ Ti43

. the necessary condition for (7) to be no greater than (8) is

+ < T
T T 1

+ T
123 243 1

24 34

or

- -+

L1, 1 .
Wl W4 w W

2 3

Lemma 5. In an optimum partition of an n-gon, let VX,Vy, v and V be
four vertices of an inscribed quadrilateral (\g< and VZ are not adjacent in

the quadrilateral). A necessary condition for VX-VZ to exist is

+ > + . (10)

Proof: The cost of partitioning the quadrilateral by the arc VX—VZ is

T + T (11)
Xyz XZW

and the cost of partitioning the quadrilateral by the arc \Q—VW is
T + T (12)
XYW yzw .

For optimality, we have (11) = (12) which is (10). &

15



Note that if strict inequality holds in (10), the necessary condition is

also sufficient. If equality holds in (10), the condition is sufficient for Vx-V
V4

to exist in the { -optimum partition provided min(x, z) < min(y, w), This lemma
is a generalization of Lemma 1 of Chin [3] where V is the vertex with the

Y
smallest weight and Vx' VW, Vz are three consecutive vertices with Ww

greater than both w and WZ.
X

A partition is called stable if every quadrilateral in the partition

satisfies (10).

Corollary 2, An optimum partition is stable but a stable partition may not

be optimum,

Proof. The fact that optimum partition has to be stable follows from Lemma5.

Figure 5 gives an example that a stable partition may not be optimum, B

D f)—@i
\ \@ @/ \':’})

(a) a stable partition (b) the optimum partition

Fig. 5

In any partition of an n-gon, every arc dissects a unique quadri-
lateral. Let V., V , V , V be the four vertices of an inscribed quadri-
x y Z w

lateral and V -V be the arc which dissects the quadrilateral. We define
X z

V -V to be a vertical arc if (13) or (14) is satisfied.
Xz —_—

16



mm(wx. Wz) < mm(wy, ww) (13)

minlw ,w )=min(w , w )
X Z v

A\
l (14)
max(w , W) <max(w , W ) j
X z Y w
We define VX—Vz to be a horizontal arc if (15) is satisfied
min(w_,w_)>min{w , w ) I
X Z Y w
‘ (15)
max{w , wW)< max(w , w ) 5
X Z Y w

For brevity, we shall use h-arcs and v-arcs to denote horizontal arcs

and vertical arcs from now on.

Corollary 3. AIl arcs in an optimum partition musgtbeeithe r vertical

arcs or horizontal arcs.

Proof: Let V -Vz be an arc which is neither vertical nor horizontal.
E— X

There are’'two cases:

Case 1. min(w ,w_ ) = min(w , w_)
X V4 Y W

and max(w ,w )> max(w , w)

X V4 Y w
Case 2. min(w ,wW )> min(w,w
X 7 Y w

and max(w ,w )2 max(w ,w )

X zZ Y w

In both cases, the inequality (10) in Lemma 5 cannot be satisfied.

This implies that the partition is not stable andhence cannotbe optimum., Il

17



Theorem 3. l.et V and V be two arbitrary vertices which arc ndt adjacent
—_— X z
in a polygon, and V_ be the smallest vertex from V_to V_ in the clockwise
) w X z

manner (V v Vv #V )., and Vv be the smallest vertex from V_ to v

w x' w z"? Y z X
in the clockwise manner (V ;évx, A VZ). This is shown in Fig. 6 where

Y Y Z
without loss of generality, we assume that VX<V and V <V | A
z y w

necessary condition for \{( - VZ to exist as an h-arc in the £ -optimum

partition is that

w <w sw <w .
X 4

(Note that the necessary condition still holds when the positions of VY and VW

are interchanged. ) Vw

- Wb -

4
’, \\
/ N
Vil Wy | (Wzlve

[} )
.\ L

= e(wy )+

Vy
TIig. 6

Proof, The proof is by contradiction. If WXSW , W must be equal to
I % X

the smallest weight w1 and VX-VZ can never satisfy (15). Hence, in

order that VX-VZ exists as an h-arc in the { -optimum partition, we must

have w < w < w . Since V is the smallest vertex from V_ to V in
Y x Zz Y z X
the clockwise manner and V <V , we must have Vv = vl .
X w Y

18




Assume for the moment that V 3 <V < Vvz . From Corollary 1,
X

both VI-V2 and VI-V3 exist in the f -optimum partition, and the two arcs

would divide the polygon into subpolygons. If Vx and VZ are in different
subpolygons, then they cannot be connected in the { -optimum partition.

Without loss of generality, we can assume that the polygon is a basic polygon.

In this basic polygon, either V-V, or Vl'V4 exists in the { -optimum
partition (Theorem 2).

If VZ’ V, are connected, then vV and Vz are both in a smaller polygon

3

in which we can treat V2 as the smallest vertex and repeat the argument. If

Vl; V4 are connected, the basic polygon is again divided into two subpolygons

and VX and VZ both have to be in one of the subpolygons and the subpolygon has

at most n-l1 sides, (Otherwise VX-Vz can never exist in the £ -optimum
partition. ) The successive reduction in the size of the polygon will either
make the connection \{< -Vz impossible, or force VX and Vz to become the
second smallest and the third smallest vertices in a basic subpolygon. Let V

be the smallest vertex in this basic subpolygon. In order that VX-Vz appear

as an h-arc, we must have w > w__. From Theorem 2, the necessary condi-
' x m

tion for V -Vz (i.e. VZ-V ) to exist in an optimum partition of the subpolygon
X

3
is
- lt 1 2 L + ———1
W W w W
X z m W
Since w_> w_ | the inequality is valid only if w <w . d
X m Z w

Corollary 4. A weaker necessary condition for V_-V_'to exist as an h-arc

in the £ -optimum partition is that

V <V €£V_<«¥V
y X Z .

Proof. This follows from Theorem 3. B

19




We call any arc which satisfies this weaker necessary condition a

potential h-arc. Let P be the set of potential h-arcs in the n-gon and H

be the set of h-arcs in the £ -optimum partition, we have P 2 H where the

inclusion could be proper.

Corollary 5. Let VW be the largest vertex in the polygon and VX and VZ

be its two neighboring vertices. If there exists a vertex V such that
Y

V <V and V < V , then V -V is a potential h-arc.
y x Y z X oz

Proof. This follows directly from Corollary 4 where there is only one vertex

between \{( and V |

Two arcs are called compatible if both arcs can exist simultaneously
in a partition. Assume that all weights of the vertices are distinct, then there
are (n-1)! distinct permutations of the weights around an n-gon, For
example, the weights 10, 11, 25, 40, 12 in Fig. 5(a) correspond to the
permutation Wi Wor Wy Woy Wy (where wl<w2<w3<vv4<w5 ). There
are infinitely many values of the weights which correspond to the same per-
mutation. For example, 1, 16, 34, 77, 29 also corresponds to wl.wz,w4,w5.w3
but its optimum partition is different from that of 10, 11, 25, 40, 12. However,

all the potential h-arcs in all the n-gons with the same permutation of weights

are compatible, We state this remarkable fact as Theorem 4.

Theorem 4, All potential h-arcs are compatible.

Proof. The proof is by contradiction. Let Vx.Vy, \Z/ and VW be the four

vertices described in Theorem 3. Hence, we have V <V <VZ< VW
Y X

20



and V_ -V is a potential h-arc. Let V —que a potential h--arc which is not
X Z P
compatible to VX-VZ, as shown in Fig. 7. Without loss of generality, we
can assume V. < \{:1 (The proof for the case \c/] < V_is similar to that
p -

v

which follows. )

Fig. 7

Since VW is the smallest vertex between VX and VZ in the clockwise

manner, we have v_< V <V , Hence, we have either V<V <V <<V
z W o] Y P Z q
or V <V <V <YV Both cases violate Corollary 4 and V -V cannot
Y z P q. P q

be a potential h-arc. @
Note that the potential h-arc VX-VZ always dissects the n-gon into two

subpolygons and one of these subpolygons has the property that all its vertices
except Vx and VZ have weights no smaller than max(wx.¥v). Wc shall call this

subpolygon the upper subpolygon of Vx_vz . For example, the subpolygon

VX....-VW-...-Vq-----Vz in Fig. 7 is the upper subpolygon of }(/ -VZ.

21



Using Corollary 4 and Theorem 4, we can generate all the potential
h-arcs of a polygon.

Let V -V be the arc defined in Corollary 5,i.e. V. <V <V <V |

X z 1 x Z w

The arc VX -VZ is a potential h-arc compatible to all other potential h-arcs in
the n-gon. Furthermore, there is no other potential h-arc in its upper subpoly-
gon. Now consider the (n- 1)-gon obtained by cutting out Vw. In this (n- 1)-
gon, let Vw' be the largest vertex and Vx, and Vz , be the two neighbors of

V , where V1 <V ,< V Z,< Vv Then V ,-V | is again a potential h-arc
W X B

X . ¢

compatible to all other potential h-arcs in the n-gon and there is no other
potential h-arc in its upper subpolygon which has not been generated. This
is true even if Vw is in the upper subpolygon of Vx,-VZ,. If we repeat the
process of cutting out the largest vertex, we get a set P of arcs, all arcs
satisfy Corollary 4. The h-arcs of the £ -optimum partition must be a
subset of these arcs.

The process of cutting out the largest vertex can be made into an
algorithm which is O(n). We shall call this algorithm the _one-sweep
algorithm. The output of the one-sweep algorithm is a set S of n-3 arcs.

S is empty initially.

The one - sweep algorithm:

Starting from the smallest vertex, say Vl’ we travel in the clockwise direc-
tion around the polygon and push the weights of the vertices successively onto

the stack as follows (w_ will be at the bottom of the stack).

1
(a) Let Vt be the top element on the stack, th be the element immedi-

ately below Vt' and Vc be the element to be pushed onto the stack.
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If there are two or more vertices on the stack and Wy > W o add

th-VC to S, pop Vt off the stack; if there is only one vertex on

the stack or th We push WC onto the stack. Repeat this step
. th

until the n  vertex has been pushed onto the stack.

(b) If there are more than three vertices on the stack, add Vt I_VC

to S, pop Vt off the stack and repeat this step, else stop.

Since we do not check for the existence of a smallest vertex whose
weight is strictly no larger than those of the two neighbors of the largest ver-
tex, i. e. the existence of the vertex VY in Corollary 4, not all the n-3 arcs gen-
erated by the algorithm are potential h-arcs. However , it is not difficult to
verify that the one-sweep algorithm always generates a set S of n-3 arcs
which contains the set P of all potential h-arcs which contains the set H of

all h-arcs in the £ -optimum partition of the n-gon, i.e.,

SDP 2o H

where each inclusion could be proper. For example, if the weights of the
vertices around the n-gon in the clockwise direction are W Wo ""Wn
where W1 SWZS swn, none of the arcs in the n-gon can satisfy
Corollary 4 and hence there are no potential h-arcs in the n-gon. The one-
sweep algorithm would still generate n-3 arcs for then-gon but none of the

arcs generated is a potential h-arc.
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3. Conclusion

In this paper, we have presented several theorems on the Polygon
Partitioning Problem. Some of these theorems are characterizations of the
optimum partitions of any n-sided convex polygon, while the others apply
to the unique lexicographically smallest optimum partition. Based on these
theorems, an O(n) algorithm for finding a near-optimum partition can be
developed [12]. The cost of the partition produced by the heuristic algorithm
never exceeds 1, 155 Copt, where Copt is the optimum cost of partitioning
the polygon. An O(n log n) algorithm for finding the unique lexicographically

smallest optimum partition will be presented in part IlI.
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1. Introduction

In Part | of this paper, we have transformed the matrix chain
product problem into the optimum partitioning problem and have stated
several theorems about the optimum partitions of an n-sided convex polygon.
Based on these theorems, we now present algorithms for finding the unique
{ -optimum (lexicographically smallest optimum) partition.

Using the same notation as in Part | of this paper, we can assume
that we have uniquely labelled all vertices of the n-gon. A partition is
called a fan if it consists of only v-arcs joining the smallest vertex to all
other vertices in the polygon. We shalJ denote the fan of a polygon
Vl-Vb-V‘ - —Vn by Fan( wl Iwb,wc. o W%. The smallest vertex VI

is called the center of the fan.

We define a vertex as a local maximum vertex if it is larger than its

two neighbors and define a vertex as a local minimum vertex if it is smaller

than its two neighbors. A polygon is called a monotone polygon if there
exists only one local maximum and one local minimum vertex. We shall
first give an O(n) algorithm for finding the £ -optimum partition of a mono-
tone polygon and then give an O(n log n) algorithm for finding the [ -optimum

partition of a general convex polygon.

2. Monotone Basic Polvgon

In this section, let us consider the optimum partition of a monotone
polygon, i. e, a polygon with only one local minimum vertex and one local

maximum ve r tex. It follows from Corollary 1 of Part | that we can



consider a monotone basic polygon only. The understanding of this special case

is necessary in finding the optimum partition of a general convex polygon.
Consider a monotone basic n-gon VI-V Z—VC—...—V?), the fan of the
polygon is denoted by

co, W)

Fan(wl|wz. W 3

where the smallest vertex V1 is the center of the fan.
The definition of a fan can also be applied to subpolygons as well. For
example, if V2,V3 are connected in the basic n-gon and V, becomes the

smallest vertex in the (n- 1)-sided subpolygon, the partition formed by con-

necting V2 to all vertices in the (n- 1)-gon is denoted by

Fan(wzlwc, cees W3)

Lemma 1. If none of the potential h-arcs appears in the { -optimum parti-

tion of the n-gon, the { -optimum partition must be the fan of the n-gon.

Proof. From Theorem 3 of Part I, we know that any arc which exists as
an h-arc in the (¢ -optimum partition must be a potential h-arc. Hence, if
the £ -optimum partition does not contain any potential h-arc, the £ -optimum
partition must be made up of v-arcs only. Hence, we have to show that
among all partitions which are made up of v-arcs only, the fan is (i) the
lexicographically smallest and (ii) one of the cheapest partitions in the n-gon.
(i) Since the fan consists of only v-arcs joining Vl to all other vertices
in the n-gon, it is by definition the lexicographically smallest- partition.
(ii) Suppose the { -optimum partition contains v-arcs only but is not the

fan. There must exist three vertices V1" Vk’vj such that the triangles



V1V.Vj and V'Vjvk are present in the £ -optimum partition. Since, Vi -Vj
1 1

is a v-arc (by assumption) and V1 is the smallest vertex in the n-gon, we

have wl =min(wi,w.) and max(wi,wj)sw . If we replace the v-arc
J

k

V.-V_ by the v-arc Vl-Vk, we can get a partition whose cost is less than or
U |

equal to that of the { -optimum partition but is lexcographically smaller

than the { -optimum partition, and results in a contradiction. B

Let Vi-V, and V -V be two potential h-arcs of any n-gon. We
J

P q
say that V.-V is_above V -V (and V -V is below V -V ) if the upper
1) P q P q 1]
subpolygon of VP-V contains the upper subpolygon of \{.—V.J .
q

Let P be the set of all potential h-arcs in a monotone basic n-gon.

P can have at most (n-3) arcs.

Lemma 2. For any two arcs in P, say Vi-Vj and Vp-Vq, we must have

either V.-V. above V -V or V -V above V.-V.
1) P q p q 1)

Proof. By contradiction. Let Vi-Vi and V -V  be two arcs in P which
P q

do not satisfy this lemma. Then the intersection of the upper subpolygons

of Vi-VJi and V -V must either be empty or consists of part of each upper
P q

subpolygon only.

Since the vertices other than V1” V.J in the upper subpolygon of
Vi_vj must have weights larger than max(w.l, vvJ.), the local maximum vertex
of the monotone basic polygon must be present in the upper subpolygon of

Vi—VJ.. Similarly, the local maximum vertex of the monotone basic polygon

must also be present in the upper subpolygon of VP—V . Hence, the inter-
q

sections of the upper subpolygons of }/\g and VP-V cannot be empty.
q



From Theorem 4 of Part I, wc know that Vi-Vi and'\l/3 -V cannot
cross cach other and hence the intersection of their upper subpolygons
cannot consist of part of each upper subpolygons only. ]

We can actually show this ordering of potential h-arcs pictorially
by drawing a monotone basic polygon in such a way that the local maximum
vertex is always at the top and the local minimum vertex is at the bottom.
Then a potential h-arc \{.-VJ. is physically above another potential h-arc
V.p-V if the upper subpolygon of V -V contains the upper subpolygon of

q P cl
V.-V.. From the definition of the upper subpolygon, we can see that
J

1
min(w., w.) >max(w,w ) if V.-V, is above V -V .
17 P 4 1 1 P 4
Consider the monotone basic n-gon which is shown symbolically in
Figure 1. Vn is the local maximum vertex and Vi—\gi,Vp—Vq are potential
h-arcs of the monotone basic n-gon. The subpolygon \F{—...—Vi-Vj--.. —Vq

which is formed by two potential h-arcs VP_Vq and Vi—Vj and the sides of

the n-gon from VP to Vi and from Vj to Vq in the clockwise direction is said

to be bounded above by the potential h-arc V.l-VJ. and bounded below by the

potential h-arc V -V ,
P a



Figure 1

Lemma 3. Any subpolygon which is bounded by two potential h-arcs of the

monotone basic n-gon is itself a monotone polygon.
Proof, Consider the subpolygon \P/—...—Vi—Vﬁ—-.. _Vq in Figure 1.

Without loss of generality, we can assume Vi? V. and Vp<(\1/ . Since

Vn is the only local maximum vertex in the monotone basic n-gon, we must

have VI <V <...<V. < Vv and V >V_ >...>V >V, _ Hence, V
P 1 n n ] q 1 p

is the unique local minimum vertex and V.J is the unique local maximum

vertex in the subpolygor;D \% _"'_Vi_},i-"'_ Vq. By definition,

V -+ -V -V -...-V is a monotone polygon. B
P 1 ] q



Lemma 4. Any potential h-arc of a subpolygon bounded aboyve and below
by two potential h-arcs of the monotone basic n-gon is also a potential

h-arc of the monotone basic n-gon.

Proof. Consider the subpolygon E’/—.-.-Vi—Vﬁ-...—Vq in Figure 1. Let
VX—Vz be a potential h-arc in this subpolygon and VW is the smallest vertex
between V>< and Vz in the clockwise direction around the subpolygon. With-
out loss of generality, we can assume V. <V, , V <V and V <V
i j P q x z
Since V>< is in the upper subpolygon of the potential h-arc VP—Vq , we have
w,<w <w <w <w . Since V,< any vertex in the upper subpolygon
1 P q b'e z ]
of V.-V. and V. < V_<V_  V s the smallest vertex between V and V in
13 w1 w X z

J

clockwise direction around the monotone basic n-gon. Hence, we have
Wl <wX < WZ < wW and VX—VZ is a potential h-arc of the monotone basic
n-gon. B

We can now summarize what we have discussed. If there
is no h-arc in the l-optimum partition of a monotone basic
n-gon, the { -optimum partition must be a fan. Otherwise, the h-arcs in the
{ -optimum partition are all layered, one above another. If we consider the
local maximum vertex Vn and the local minimum vertex V1 as two degen-
erated h-arcs, then the £ -optimum partition of a monotone basic n-gon will
contain one or more monotone subpolygons, each bounded above and below

by two h-arcs and the { -optimum partition of each of these monotone sub-

polygons is a fan.



Then, in finding the £ -optimum partition of a monotone basic polygon, we
have only to consider those partitions which contain one or more subpoly-
gons bounded above and below by potential h-arcs and each of these sub-
polygons is partitioned by a fan. Since there are at most (n-3) non-
degenerated potential h-arcs in a monotone basic n-gon, there will be at
most 2n- such partitions and we can divide all these partitions into
(n-2) classes by the number of non-degenerated potential h-arcs a partit ion
contains. These classes are denoted by HO’Hl""’Hn3 where the sub-
script indicates the number of non-degenerated potential h-arcs in each
partition of that class.

There is no potential h-arc in the partitions in the class H

0

Hence the class consists of only one partition, namely the fan

Fan(w, | Worenos Wal

In the class H_, each partition has one non-degenerated potential
h-arc. Once the potential h-arc is known, the rest of the arcs must all be
vertical arcs forming two fans, one in each subpolygon.

Two typical partitions in HI of a monotone basic polygon are shown
in Fig. 2. In Fig. 2a, there is one non-degenerated potential h-arc,

VC-Vi (Vc< V1)° The upper subpolygon is a fan

» W)

F y e .
an(wclwd i

and the lower subpolygon is a fan

]:“a,n(w1 IWZ’ WC, W w3)



(@)

Fig. 2. Two typical partitions in H1 of a monoton
- 10-gon.
In Fig. 2b, there is one potential h-arc, VZ—V3 , and the upper
subpolygon is a fan

, W)

F
an(wzlwc,... 3

and the lower subpolygon is a degenerated fan, a triangle.

Assume that VZ—V3 is the only h-arc, then the cost is (see Fig. 2b)

+ + +w +w w, tw.w
W1W2W3+W2(chd+wdwe Wewf wf'v'vg “gwh Wi ; 3)
_ T123 t WZ(WC : w3) s (1)

where WC:W3 is the shorthand notation of the sum of adjacent products from

WC to w3 in the clockwise direction.

Note that the cost of H0 of the polygon shown in Fig. 2 is



W)

Fan(wllwz,. .. 3

= wl(wzz w3) (2)

The condition of (1) to be less than (2) is

W, . (WC:W3)

. ) <W1
( YiWgp) = Woe Wy

Similarly, the condition for the partition in Fig. 2a to be less

than HO is

T w.)
i
'

. (w

d

(w :w.) - w
© 1

o < W o )
& 1

We say that a partition is said to be f -optimal among the partitions
in a certain class (or several classes) if it is the lexicographically smallest
partition among all the partitions with minimum cost in that class (or
several classes). Hence, the | -optimum partition is | -optimal among all

partitions in the classes H_, Il—l , ...,and Hn

0 3

Now, assume that the P-optimal partition among all the partitions in

Hl'HZ’ Ce Hn 3 contains only one potential h-arc \I/ -Vk only, as shown

in Fig. 3. (Note that Vi—V will exist in this partition as an h-arc. ) This
1

k

partition will be the {£ -optimum partition of the monotone basic n-gon if it

costs less than that of the fan in H The condition that the partition with

01
Vi-Vk as the single h-arc costs less than HO is
W, o .
i ] Wk) .
W iw - w - <vx1 |fw.1swk
i Tk 1 k
or

10



Fig, 3. A monotone polygon with a single h-arc.

W W, IW )
K () 1 g <w, ifw o <w
e -W. . W
(W1 W w, K

Combining the two inequalities above, we have

C(W,y » W )
i k
) < W1 4
(w1 Yk TN
where C(w.,.. ., Wk) denotes the cost of the optimum partition of the
1
subpolygon w.-w.-... W - Wy and is equal to the cost of the fan in this
LN | g
case.
An h-arc Vi—Vk which divides a polygon into two subpolygons is
called a positive arc with respect to the polygon if (4) is satisfied, i. e., the

partition with the arc as the only h-arc and a fan in each of the two subpoly-
gons costs less than the fan in the same polygon. Otherwise, it is called a

negative arc with respect to the polygon.

11



When an n-gon is divided into subpolygons, an h-arc is defined
as Positive in a subpolygon if the cost of partition of the subpolygon with
the h-arc as the only h-arc is less than the fan in the subpolygon.

Let us consider a partition with two h-arcs as shown in Fig. 4,
and assume that this partition is ¢ 0Ptimal among all partitions in the

classes H,, H e H .

Fig.4. A monotone 8-gon with two h-arcs.

I f Vi—Vk is positive with respect to the subpolygon

V.-V -V -V -V then the condition analogous to (4) is
1 i p q k

C(wi, wp, wq, wk)

((wow ) lw:w)-w-w]}-w-w |
1 P q P i

k k

If Vi-Vk is positive with respect to the whole polygon

v,-V. -, .-V - .-V , then the condition is
1 i n k

12

< w (5a)



Clw,,w ,w ,w ,w ,w, w )
i"p ¢ s q "k

5]
(wi:wk) - Wi . wk < Wl , (5b)

Note that (5b) implies (5a).

The condition for the arc V -V to be positive with respect to
P g

th bpolygon Vv -V -V -V -V -V -V is
© subpolyg i p r n s g Kk

Clw ,w ,w ,w_, w)

n S

(w :w) - w.w
q P

(6a)

< min(w,, w
1

1)

1f the arc VP—Vq is positive with respect to the whole polygon

V. -V.-V -V -V -V -V -V_ it must satisfy (6b).
1 i p r n sq k

Cl(w P WL W W W )

(w :w )-w -Wq < W (6b)

Since Wl<min(w_,1 wk), condition (6b) implies (6a).

Here, the presence of Vi-vk will divide the original polygon
into two subpolygons where Vp—anppcars in the upper subpolygon.
If Vp—Vq is a positive arc with respect to the original polygon, then

V -V is certainly positive in the upper subpolygon. But if V -V s

positive in the subpolygon, the arc V -V may become negative if
P q
Vi-Vk is removed, i, e. Vp—vq becomes negative with respect to the

original polygon.

Similarly, if the arc Vi-V is positive with respect to a sub-

k

polygon, the arc \/1.-Vk may become negative if the arc V -V is
P q
removed,

The preceding discussions can be summarized as Theorem 1.

13



T_rl_e_clre_mﬁil: If an h-arc is positive with respect to a polygon then the
arc is positive with respect to any subpolygon containing that arc. If an h-arc
is positive with respect to a subpolygon, it may or may not be positive with
respect to a larger polygon which contains the subpolygon. @

There are two intuitive approaches to the £ -optimum partition of
a monotone basic polygon. The first approach is to put in the potential
h-arcs one by one. Each additional potential h-arc will improve the cost
until the correct number of h-arcs is reached. Any further increase in
the number of h-arcs will increase the cost. To introduce an h-arc into
the polygon, we can test each potential h-arc (at most n-3) to see if it
is positive with respect to the whole polygon. If yes, that positive
arc must exist in the P-optimum partition, and the polygon will be
divided into two subpolygons, each being a monotone polygon. We can
repeat the whole process of testing positiveness of the h-arcs, The
trouble is that all these arcs may be negative individually with respect to
the whole polygon and yet H0 may not-be the optimum. For example, two
arcs V.l-V.J and VP—quay be negative individually with respect to the
whole polygon but the partition with both \1/\{] .,Vp-Vq present at the
same time may cost less than Hoas shown in Fig. 5a. This shows that
we cannot guarantee an optimum partition simply because no more
potential h-arcs can be added one at a time.

The second approach is to put all the potential h-arcs in first

and then take out the potential h-arcs one-by-one, where each deletion

14



will decrease the cost until the correct number of h-arcs is reached.
Any further deletions will increasethe cost. Unfortunate3 y, even if
all h-arcs are positive with respect to their subpolygon, the parti-
tion may not bc optimum. In Fig. 5b, each h-arc is positive

with respect to its local subpolygon but the partition is not optimum.
(Note that positiveness of an h-arc in a quadrilateral is the same as
stability, But the idea of stability applied to vertical arcs as well. )
This means that we cannot guarantee an optimum partition simply

because no h-arc can be deleted one at a time.

(@) (b)

Fig. 5. Counter examples for the intuitive approaches.

15



Let us outline the idea of an O(n) algorithm for finding the £ -optimum
partition of a monotone basic polygon. First, we get all the potential
h-arcs by the one-sweep algorithm. Then, we start from the highest
potential h-arc and process each potential h-arc from the highest to the
lowest. For each potential h-arc, we try to get the { -optimum partition
of the upper subpolygon of that arc (i. e. the £ -optimum partition of the

subpolygon bounded below by that h-arc). The £ -optimum partition in

the subpolygon is obtained by comparing the cost of the B-optimal partition
among the partitions of the upper subpolygon which contain one or more
potential h-arcs with that of the fan in the upper subpolygon.

If we try all possible combinations of the potential h-arcs as
candidates for the f -optimal partitions, we need O(n3) operations to
find the £ -optimum partition. Fortunately, there are some dependence-
relationships among these potential h-arcs. Hence, certain subsets of
the potential h-arcs will either all exist or all disappear in the | -
optimum partition of the monotone polygon. We shall be dealing with
potential h-arcs most of the time, so we shall use “arcs” instead of
potential h-arcs for brevity.

Consider the monotone basic polygon shown symbolically in
Fig. 6. There are three potential h-arcs, denoted by hk’hj’ and h'1'
Vn is the local maximum vertex and V1 is the local minimum vertex.
Without loss of generality, we can assume waé\év' for a = i, j and k.
Since we shall deal with subpolygons bounded by two potential h-arcs,

let vsuse hn for Vn and hl for VI (i. e. we consider these vertices as

16



degenerated arcs). From Lemmas 1 and 3, the {-optimum partitions of

the subpolygons bounded by two potential h-arcs (i.c. the white area of the
polygon in Fig. 6) are all fans.
Assume (i) hk is positive in the subpolygon bounded by hn and hj

but ln.k is negative in the subpolygon bounded by hn and hi’

(i) hj is positive in the subpolygon bounded by hk and hi but h.J

is negative in the subpolygon bounded by hk and hl , and

(iii) hi is positive in the . subpolygon bounded bth. and h1 only.

Then either the three arcs hk hj' h.1 all exist or no h-arcs exists in the

optimum partition.

This shows that the existence of an h-arc depends on the existence

of another h-arc.

We shall use the notations

h
C<hJ> to denote the cost of the { -optimum partition of the

subpolygon bounded above by hj and bounded below

by hi’ and

h
H0<hJ> to denote the cost of the fan in the subpolygon bounded

above by h. and bounded below by h1 .
J

17



Fig. 6. An octagon with three potential h-arcs.

In Fig. 6, the condition for hk to be positive with respect to the

whole polygon is (compare (5a))

<
:Wk,)-w cw/ 1 (7)

(w k- Yk

k

The LHS of (7) is denoted by

*(ur)

and is called the supporting weight of h, with hnas the ceiling (the

definition of ceiling will be given formally later). Note that the LIS of
(‘7) depends only on the weights of vertices in the upper subpolygon of h.k
In terms of the supporting weights, we can write the three

conditions (i), (ii) and (iii) as follows:

18



h
(1) W, < S(h;) < Wj
) Py
(i) w1 < s h <wi

)

is the father of hj)

An arc hj is a son of tiwearc hi(or hi
if the following conditions are satisfied:

(1) h. is above h1 (the son is above the father)

(ii) In any subpolygon containing hi and 51 , the arc i} will exist
in the { -optimum partition of the subpolygon if and only if h.1
exists in the £ -optimum partition.

(iii) h.1 is the highest arc that satisfies (i) and (ii).

It is easy to see that every arc can have at most one father but an arc

can have many sons. Also the ancestor-descendant relationship is a

transitive relationship. If an arc exists in the { -optimum partition, all

its descendants will also exist.
An arc hk is a ceiling of an arc hi if the following conditions
are satisfied:
(1) hk is above hi
(i) h,_ is not a descendant of hi

k

(iii) hk is the lowest arc which satisfies (i) and (ii).

19



Consider two partitions of a subpolygon as shown in Fig. 7 .

() ) (b>

Fig. 7. A subpolygon of the octagon shown in Fig. 6
(The shaded areas are optimally partitioned
and the blank areas are partitioned by a fan.
The h-arcs in the shaded area are all
descendants of h.J )

The cost of partition of Fig, 7a is

h h
k j
C
(h.) * HO(h,)
j i

where the cost of partition in Fig. 7b is

H "k
o\h,
1

The condition for the partition in Fig. 7a to be checaper than that inFig,7b

is (similar to (5a))

20



In order to give an intuitive meaning of the supporting weight S(h )
]
let us regard hk and h. in Fig. 7 as fixed while the position of h1 can be
J

moved up or down by increasing or decreasing the values of wy and Wi"

If h,lmoves up and coincides with hj’ i. e, w. = W.,J the partition in Fig. 7a
costs less than or equal to the partition in Fig. 7b. If the position of h,
moves down gradually from hJ there will be a position for which the cost

of the partition in Fig. 7a is equal to the cost of the partition in Fig. 7b.

We can consider this position as a fictitious arc f.J , 1. e.

h 'h h
k iy L k
C<hj ) + HO(fj > = H0<f- > , (8)

J

the £ -optimum partition of the subpolygon bounded by hk and hi becomes

a fan. The arc fj is called the floor of h-J Note that the minimum of the

two weights associated with fJ is the supporting weight of hJ .
We now give two examples to illustrate the concepts, notations

and the algorithms. Then a formal description of the algorithm will be

given.

Consider a monotone basic polygon with five Potential h-arcs,
hb'hS' e h2 where h6 is the highest arc as shown symbolically in
Fig. 8. Let wis\;v_’ for i = ab, . ., e. The maximum vertex,

1

which lies above h6' has the weight wf and the minimum vertex,
which lies below h2, has the weight W We can regard W (and Wl)

as a dcgenerated arc and use h7 to represent Wf (a nd hl to repre-

sent Wl)'
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Fig.8 . A1l2-gon with 5 h-arcs,

Example 1
Let us write down the comparisons made in the algorithms.

First, we compare

22



Fig. 9. Ilustrations for Example 1.

9a. To find f6.

In the equation, f6 is the only unknown. In computation, we do
not use the equation but use the supporting weight of h() instead (h7 is

the ceiling of h,). If the h-arc h_ is below or coincides with f6 , which

6 5

means that h6 is negative with respect to the smallest subpolygon, h6
should be deleted and never appear in the { -optimum partition, For
simplicity, we shall assume all arcs and floors have distinct positions

in the example.

Let us assume that f6 is below h5, or symbolically we write

Fig. 9b. - The posit ion of fb'
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Then we do the next comparison.

h h h
6 5 6
0 h5 0 f5 0 f5

~xy @

WoLL\\ N \\\\/w )

Fig. 9c. To find fS'

Assume that f6/f5, i.,e. h, is a son of h5, and h4/f5\\, the next

6

comparison is

Fig. 9d. Condense h6 to hS and find f65
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Note that f is in a sense the combined floor of h() and. h5 and h7

65

becomes the ceiling of h5, The equation can also be written as

h h h
7 5 7
h5 0 f65 0 f65

1f h4/f the next comparison will be

65’

Fig. 9e. To findf4.

Assume that f65/f4’ i.e. h5 is a son of h4, and h3/f4, we have

25



Fig. 9g. To find f3.
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Assume that f654/f3’ ie. h4 is a son of }13 and hZ/f3,wp compare

h

h h
nn) * 0ty ) ol
3 6543 6543

We

NN

ee® e - . v —— Vo mo e e e wm e

Fig. 9h. To find f -

with h7 as the ceiling of h3. Moving to hZ’ we compare

ol afeg) ol
0 h2 0 f2 0 f2.

” K 3 Wy " +3 Wy
bw\\\\\\\{a\\\\\y\/.) v's % Q
%\___f_a__ / \ f2

- - --

Fig. 9i. To find fZ.
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Assume that f6543/f2’ i.e. hyis a son of hZ’andhlle’ we have

Wi Wy

SOOI
NUNVANI
\\\\\}2_\\\\5 :

a

(%)
Fesuze

Fig. 9j. To find {

65432°

and h is the ceiling of h2 A § 3

the partition consisting of

is the { -optimum partition.
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Fig. 9k, The £ -optimum partition.

h h
7
1f S( ) Zwl , then HO(h ) will he the ¢ -optimum partition.
1

Exam ple 2. The successive comparisons are

h h h
7 6 7

H ( ) + H < ) = H ( )
0 h6 0 f6 0 f6

Fig. 10. lustrations for Fxample 2.

10a. To find f6 .
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Assume that h, /f6 , we compare

Fig. 10b. To find £,

Assume that f5/f , i.e. h, becomes the ceiling of h5,and h4/f , we

) 6

5

compare

h h h
5 4 5
H( )+H( ):H( )
0h4> 0f4 Of4

Fig. 10c. To find f,
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Assuming that f4/f5, i.e. h5 becomes the ceiling of h4,anflh3/f4 , we

compare

v‘/

R4 7
‘“/:\\\\\\k\\\\\; V's

e

2

Fig. 10d. To find f3.

Assuime that f3/f4 and f3/h2, then arc h3 should be deleted. Next,

we assume that f4/h2, then arc h4 should also be deleted, Suppose

hz/fS, we shall then compare

s

Fig. 10e.To find fZ.
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Assume f5/f2, i. e. h_is a son of hZ‘ and hl /:f2 , we then detcrmine

5

\«/) \ﬁ" W,
NN

[
W
IR

Assume f6/f52’ i.e.h6 isa son Of hz,and hl/fsz,our next com-

Fig.10f. To find f .

prison is

Fig. log. To findf()sz'
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and h7 becomes the ceiling of hZ.

h h
7 2
iti C t H is th
Assume hl/f652' the the partition ( hz) O(hl) is e

{ -optimum partition.

Fig. 10h. The {-optimum partition.

Had we assumed f52/f6 and f52/h1 then both h5 and h2

should also be removed and we are left with

f6 against h1 .

I f hl/f()’ then we have the { -optimum partition

h h
H ( 7) + H < 6)
O\h O\t :
6 B
From the above two examples, we can see that hk is the ceil-

ing of h. if hk is the lowest arc abovehi such that the supporting
1

weight of hk is smaller than or cqualto thatof hi

33



Let us outline the algorithm for finding the ¢ -optimum partition

of a monotone basic polygon.

1. Get all the potential h-arcs of the polygon by the one-sweep
algorithm. (All the h-arcs form a list with the arc Vb—Vb, at
the bottom. )

2, Process the potential h-arcs one by one, from the top to the bottom.

(We try to find the { -optimum partition of the subpolygon bounded
below by the arc being processed, )

2a, Let hR be the arc currently being examined, hC be the arc

immediately above h

R’ and hN be the arc immediately below

hR in the list. If hR is negative with respect to the subpoly-

gon bounded above by h_, and below by hN, delete hR’ other-

C

wise go to Step 2c.

2b, Once h_ and its descendants are deleted, we backtrack to h

R C

and compare the cost of the partition with hC and its descend-
ants against the cost of the fan in the subpolygon bounded above

by the ceiling of h ., and below by h If the fan is £ -optimum

C N*

in the subpolygon, we will delete hC and repeat this step until

no further deletion is possible. Then we move to examine hN'

(The actual comparisons are done in terms of the supporting
weights. )

2c. Mere, h_ is positive in the smallest subpolygon bounded by

R
potential h-arcs. We will backtrack to condense all its

descendants to hR as follows. Let hé be the ceiling of hC’ If
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he he '
S <S ,h . becomes a son of h, . We will
hR hC C R

combine hC as well as all its descendants to hR and

h /
C
recalculate the combined supporting weight S(h )
R

Replace hC by hé and compare the cost of the partition
with hR and its descendants against that of the fan in the sub-
polygon bounded above by the new hC’ i. e hé , and below
by hN . If the fan is £ -optimum in the subpolygon, we

delete hR as well as its descendants, and go to Step 2b to

see if we can delete more arcs. Otherwise, we repeat this

step to see if we can condense more arcs.

e he
2d., Now we have S<h >2 S h , the supporting weight of
R C

h
C\.
hC . The arc hC is the ceiling of hR and S<hR> is the

supporting weight of hR . We move and process hN.
Before a formal description of the algorithm is given, a procedure

to process the list of potential h-arcs in a monotone polygon is presented.
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Proccdure MONO-PAKTITION (L)

Input:

Step 1

consists of a list of potential h-arcs, passed to the procedure
via the argument L. Let h1 be the lowest arc in L, the

one immediately above h1 be h2 , and th be the highest

arc in L. (Note that h1 and h are degenerated arcs with

ptl
the minimum vertex and the maximum vertex of the polygon. )

consists of all the potential h-arcs that exist in the P-optimum

partition of the polygon.

hC D= hptl :

hR:= hp ;

hN:= hp-l ;

MIN-WEIGHT : = minimum of the two vertices of hN :

Comment: hR is the arc to be processed and hC is the ceiling
of the subpolygon. hN is the arc immediately below hR in L.

h
Calculate S(hc> :

R

hC
If S< ) 2 MIN-WEIGHT

h
R

then go _to Step 2

else go to Step 3 .
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2 i # And
Step 2 While (hp; hPH)

(the supporting weight of hRZMIN—WELGHT)QQ
Begin

Remove hR and all its descendants from L

h_ = ;
R hC '
hC . = the ceiling of the new hR
End;
Go to Step 4.
h . # i i
Step 3 1f C hp t)I and (the supporting weight of hR< the
supporting weight of hC)
then
Begin
Condense hC and all its descendants into hR |
hC . = the ceiling of hC,
go to Step 1;
End
else.
Begin
hC
Record S as the supporting weight of h,, and h . as
h ' R C
R
the ceiling of hR;
go to Step 4;
End.
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step 4 If hN # hl

then

Begin
hc D= hR;
h, : = ;
R hN ’
hN .= the arc immediately below the new hR;
MIN-WEIGHT : = minimum of the two vertices of

the new h_ ;
N

go to Step 1;

End

else. go to Step 5 ;
step 5 Exit procedure and return L to caller.

Now we can give the algorithm for finding the £ -optimum parti-

tion of a monotone basic polygon.

Algorithm |

Inﬂ consists of n positive integers, which are the weights of the
n vertices of the monotone n-gon. W[1] is the weight of the
minimum vertex and W[i+1] is the neighbor of W[i] of the
n-gon going in the clockwise direction. Let the weight of the

maximum vertex be W[t].

out put consists of a list of potential h-arcs which will exist. in the
l-optimum partition of the n-gon, the partitions in the sub-

polygons bounded by every two consecutive arcs in the list

are fans.
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Step O For. i : = 2 step 1 until N do
-1
CpPli] := Swi[j1.wl[j+1]:
j=1
crl1]: = o;

Comment: The sum of adjacent products W [i1: W [j] can be

obtained from CP[j]-CP[i] for 1 <i<j< N and hence

we can calculate the supporting weights easily.

step 1 Apply the one -sweep algorithrn to obtain a list of arcs.
T.et this list be L.
Comment: L contains (n-3) arcs which includes all potential
h-arcs in the monotone n-gon, and these arcs are layered,

one above another.

Step 2 From L, remove those arcs which are not potential h-arcs;

If L is empty

then go to Step 6

else go to Step 3.

Step 3 ILet the lowest arc in L be hz, the one immediately above
hZ be 113 , and so on:
Let the highest arc in 1. bc h ;
P
Insert hl with weight W [1] below hz;

Insert th with weight W [t]above h
" P

Comiment: h is the ceiling of h
ptl P
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Step 4 MONO- PARTITION (L);
Comment: when returned from MONO- PARTITION,L will

contain all the ceiling arcs with their descendants in the d-opti-

mum partition.

from 1.;
Step 5 Remove h1 and th

Step 6 Output L and stop.

This algorithm has been implemented in Pascal and the listing of

the computer program is given in Appendix I.

Lemma 5. Any arc which is deleted from the arc-list L in Step 2 of
the procedure MONO-PARTITION cannot be present in the £ -optimum

partition of the polygon.

Proof. There are two cases in which an arc is deleted from L:

(1) Its ancestors are deleted. It follows from the definition of the
ancestor -descendant relationship that it cannot be present in the
£ -optimum partition of the polygon.

(2) It is the hR which satisfies the logical condition of Step 2 of the
procedure. Hence, in the subpolygon bounded below by hN and above by
hC' the partition with hR and its descendants costs more than or equal to
that of the fan. lence, the partition with hR and its descendants is not

¢ -optimum in the subpolygon and hR as well as its descendants should not

appear in the { -optimum partition of the whole polygon. B
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Lemma 6. After an arc hi has been processed, the subpolygon be-

twccnh.land its ceiling is optimally partitioned.

Proof. The h-arcs remaining in the partition of the subpolygon are all

descendants of hl" By definition of the ancestor-descendant relationship,

the partition of the subpolygon is optimum. u

. -+ i h !h $ ¢ . . .
Lemma 7 IetVt be the maximum vertex, and TR ,hJJrl be

a set of h-arcs in the partition such that

s Y
and hk is the ceiling of h, ]
h, is the ceiling of h.,
jtl ]

then the supporting weights of these h-arcs satisfy

h h h
t k ce < i
S<h ) 8 S(h ) 8 - S(hj ) )

k k-1

Proof. Assume that one of the inequalities is not satisfied, say

h, h
j+2 ERES
S
<h, ) > b(h,
Jtl j
Then if I’} cxists h, will also exist, h. . becomesasono f h, . This

j+l jiI-1 j

contradicts the assumption that h"+ is a ceiling of h.. (]
J J

1
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Lemma 8. Any arc which remains in L at the end of the procedure must

be present in the ! -optimum partition of the polygon.

Proof. We can divide the h-arcs in L at the end of the procedure into two
groups:

() those which are descendant of some other arcs in the output, and

(ii) those which have no ancestor in the output.
By the definition of the descendant-ancestor relationship, the arcs in
group (i) must be present in the { -optimum partition whenever their cor-
responding ancestors in group (ii) is present in the ( -optimum partition.
Hence, we have only to show that all arcs in group (ii) must be present
in the £ -optimum partition.

Let Vt be the maximum vertex and the set of arcs in group (ii)

be h ,h »h., , h such that h /h _/ .é&l/hé . Since none

kK k1777754 k' k1" "

of these arcs has an ancestor, we must have

h, as the ceiling of h

k k-1"'

and h ili )
j+1 as the ceiling of hS.

From the logical condition in Step 1 of the procedure, we have

w, > s( j”) (10)
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which implies that

h h

] ‘h
t t k
H ( ) > C( ) + I ( )
h
0 1 hk 0 h1

h h h h

. . .
> {C<h)+c(hk )+---+C(}i+1)+ﬁo<h3)
K k-1 3 1

= the cost of the £ -optimum partition of the polygon.

In other words, for any arc h_1 in group (ii) of L, i = k,k-1,...,j+1, |
all the arcs above h1 in L must be present in {-optimum partition of the

h
. t ht hj
upper subpolygon of h,. Since H > C + H , they all
i 0 h1 hj 0 h1

should be present in the { -optimum partition of the monotone basic

polygon. B

Theorem 2. The partition obtained by the algorithm is £ -optimum.

Proof, From Theorems 3 and 4 of Part I, we know that all the h-arcs
present in the { -optimum partition are potential h-arcs and hence are
included in the arc -list L obtained by the one-sweep algorithm, It follows
from Lemmas 5 and 8 that all the arcs which are deleted from L cannot be
present in the { -optimum partition and all the arcs which remain in L must

be present in the { -optimum partition. Further, from Lemma 1, the
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f-optimum partition in any subpolygon bounded by two adjacent potential
h-arcs in L must be a fan. Hence, the partition consisting of the h-arcs
output by the algorithm and with fans in every subpolygons bounded by
two adjacent arcs in L must be £ -optimum. H

Let us examine how much time we spend in executing the
algorithm,

Step 0 and Step 1 each scans the polygon once, and hence takes
O(n) time. Since there are at most n-3 arcs in L, Step 2 also takes
O(n) time. There are three nested loops in the procedure. The inner-
most one is in Step 6, the middle one spans from Step 1 to Step 3, while
the outermost one spans from Step 1 to Step 5. Whenever the innermost
loop is cxecuted once, a potential h-arc is deleted from L. Whecnever
the middle loop is executed once (i.e. the “then” part of Step 3 is exe-
cuted once), a potential h-arc is condensed into its father. Once an arc
is deleted or condensed, it will never be examined again. Since there
are at most n-3 potential h-arcs in I., the total number of executions in
Step 2 and Step 3 is O(n). The outermost loop will also be executed at
most (n-3) times. Ilence the whole algorithm will finish its work in O(n)

time.
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3. The Convex Polygon

Thereinay be several local maximun vertices in a gencral con-
vex polygon. Let us still draw the polygon in such a way that the global
minimum vertex is at the bottom. From Theorem 4 of part I, we know that
all potential h-arcs are still compatible in a general convex polygon. How-

ever, unlike those in a monotone polygon, the potential h-arcs no longer

form a linear list. Instecad, they form a tree, called an arc-tree. In Fig. lla,

therce is a 12-gon with 6 potential h-arcs and they are labellcd as hz, hg: h4, h5,
. inV -V _V_-V v, -V

h6’ and h7 (Note that we also obtain 4V VeV and 6" '8 from

the one- sweep algorithm. In order to have a simpler example, let us

assume that all these three arcs are unstable and hence are not shown
in Fig. lla. ) To get a better feeling of the arc-tree, we can redraw the
12-gon as shown in Fig. 11b, Again, we regard V1 as a degenerated

arch V.__ as a degenerated arc h8’ and Vl as a degenerated

T 12 1

arc hg'

The father-son relationship still holds for the h-arcs in a gen-
eral polygon, and we can also define supporting weights of the arcs in a
similar way. The only difference is that the ceiling of a subpolygon may
consist of more than one arc. Before we can calculate the supporting
weight of any arc, we must process all thcarcsabove it, i. c. all the arcs
in its upper subpolygon. Hence, we can do a post-order traversal through

the arc tree. Let us consider the following two examples. Again, for

simplicity, we assume that all arcs have distinct positions in the examples.
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(b)

Fig. 11. A general 12-gon.
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Example_ 3.

We first compare

Fig. 12. Tllustrations for Example 3.
12a. To find f5.

Assume h{_;\/f5 , We compare

h h h
5 4 5
Oh4 Of4 0 f4

Fig.12b. To i nd f4.

47



Assume }13/f4 and fs/f4,w c condense hr) into h(1 ,

h h h h
-8 5 4 8
0 h5 0 h4 0 f54 0 f54

or

Fig. 12c. To find f54.

Before we can process h3, we have to process h7 and h6 first. Hence,

the next comparison is:

h h h
9 7 9
N >+H< )H<>
Oh7 Of7 Of,7
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Fig. 12d. To find f7.

Assume hé/f7 , we compare

h h h

7 6 7
H< >+H< ):I—I< )

0 h6 0 f6 0 f6

Fig.12e. To find {

6

We have h3/f6 and f7/f6 . we condenseh7 into h() ,

h h h h
9 7 6 9

H < ) +Ivi< >+I-I ( > = H < >
0 h7 0 h6 0 f76 0 f76

or
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Fig. 12f, To find f76'

Assume h3/f76 and next we process the arc h3, using both h4 and h6

as the ceilings of h3,

. (h4,h6> . <h3> . <h4,h6>
0 h3 0 f3 0 f3

Fig. 12g.To find f3.
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Suppose hz/f3 and f54/f76/f3, we first condcnseh5 and 114 into h3

and wc get

h_,h
c 8" %6 h3 h8'h6
h + HO P = HO ¢
3 544 543

Fig. 12h. To find f543.

NOW.hZ/f543 and f76/f543.so we condense h7 and h6 into h3 and

obtain

,h h h_,h .
hgr By 3\ g’ %9
{4 +Hy s = Ho s

3 54763 54763

Fig. 12i. To find f

54763
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Assume h2/f54'763 nnd we compare

113 }12 h3
H,(, + H = I
N2, O\ £, 0\f,,

Wy % s Wi A Ws
Ej//////é//////g\g V’s g{; %J;

/fz. we condense h3 and its descendants into

Fig.12j.To find fZ'

Suppose‘hl/f2 and f54763

h2 and get

h_,h h ,

c 89 2 _ h8 h9
h * Ho f - Ho f
2 547632 547632

KD @ @ @
s O D7 )

%
/
/ £ 3 /////,

W3

| f 547632 J | § 547632

— e wme cw mem e e e . -

Fig. 12k. To find f547632'
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It hl/f

547(32" the £ -optimum partition of the whole po],ygo.n consists
. \ )
of all six h-arcs h,, hj, h,, hoohbandb, 1 f54’7632/11 , all six

h-arcs will beremoved and the f -optimum partitionis a fan.

Example 4

We first compare

e
///
L EW v's
fs_ -~

-
-

-

Fig. 13. Illustrations for Exam ple 4.

13a. To find f5.

Assume }14/f5 and we compare

h‘
o) eler) - ol
Oh4 Of4 Of4

Fig. 13b. To find f4.
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Let }13/f4 and f‘]:/f5 , SO we compare

h h h
9 7 9
H(>+H<>=H<)
0\h_ o\f, o\f,

Fig, 13¢., To find f

h6 /h,7 and we compare

h h h
7 6 7
H( >+H( >=H( )
Oh6 0f6 0f6

Fig. 13d. To find f6 .

We have }13/f6 and f6/f7 » S0 our next comparison will be
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Fig.13e To find mw

Suppose T.N\mw and mﬁ\mw\mw. we condense h, into h,

rm.ro Tw Fm.rmu
C h + Io f = mo £
3 43 43

Fj — .
1g 13f. To find m\*w
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Assumch /f43 43/6 and f, /f »we proceed to process h,,

h h h
3 2 3
0 h‘2 0 fZ 0 f2

R 3

//// ”////5 Z 23

-

-.....—..——..-_————_--.

Fig. 13g. To find fz.

Assume hl/fZ and f43/fz. we condense h_ into h

3 2’
hoo hy h, he by
C h + I'{O £ = HO P
2 432 432

Fig. 13h. To find f

432"
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Supposc f /h. ,w cremove }12 as well as its descendants h

432/M and h4.

3
Assume fé/f5 and f6/h1,wcrcmovc}\6from the polygon, Now, we
have {7/f5 and f7/hl, SO we remove 117 from the polygon. Finally,

we have hl/f5’ and the £ -optimum partition of the polygon consists of one

) 5'{8@\ ’ 45
/ﬁ/ /@/
& @

Fig. 13i. The optimum partition.

From the above two examples, we have the following observa-
tions.

(1) Before we can process a potential h-arc, wc have to process all
the arcs above it. Hence, wc should do a post-order traversal, starting
at the root of the arc tree, i. e. the degencrated arc h

(2) Whenever we do a condensation or deletion, we always pick the
ceiling arc which has the highest floor first, i. c. the onc with the
largest supporting weight. Hence, wc should kcc p track of theordcr

of the ceiling arcs.
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(3) Once a ceiling arc hj of hi is removed or condensed, the ceiling
arcs of hj becomethe ceiling arcs of h_l and wc have to updatethe

order of all the ceiling arcs of hf'

One way of keeping track of the order of the ceiling arcs is to

keep them in a priority queue.

Now, let us outline the algorithm for finding the optimum parti-
tion of a gencral convex polygon.

1. Get all the potential h-arcs of the polygon by the one-sweep
algorithm. (All the h-arcs form a tree, with the root at the
bottom. Let the arc-tree be T.)

2, Process the h-arcs, one by one, from the leaves to the root. (We
always process the children before we process the father, and we
always obtain the optimum partition of the subpolygon bounded below
by the arc being processed.)

3. Let hR be the arc currently being examined, UR be the set of arcs

immediately above hR’ and h_ . be the arc immediately below hR

N

in T. |If hR is negative in the subpolygon bounded above by the

arcs in U_ and below by hN , delete hR , else go to step 5.

R
4. Once hR and its descendants are deleted, we exarnine the arcs in
UR to scc if we can deletemore arcs. If yes, wcdeletethe arc

with the largest supporting weight; then we include its celing arcs
into UR and rcpeat this step. Otherwise, we move to process the

next arc.
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Now, h_ is positive in the smallest subpolygon. If there exists

R
some arc in UR , say hJ_, such that
UR'
S < the supporting weight of h. ,
hR ]

we will pick the arc with the largest supporting weight in

UL, condense it with its descendants into h, and include all

its ceiling arcs into UR’ Then we compare the cost of the partition
with hR and its descendants against that of the fan in the subpolygon

bounded above by the arcs in U, and below by h__. If the fan is

R N

{ -optimum in the subpolygon, we remove hR as well as all its

descendants from T, and we exarnine the arcs in UR to see if we

can delete any more arcs. Otherwi se, we examine the arcs in UR

to see if we can condense any more arcs.

U
Now, S (hR> 2 the supporting weight of every arc in UR - The
R

U
R} . .
arcs in U_ are the ceiling arcs of h, and S (h > is the supporting
R R R

weight of hR . We move to process the next arc.
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Before presenting the algorithm, let us describe a recursive

procedure to process the potential h-arcs of any subpolygon.

Procedure PARTITION (ROOT)

Input:

out put:

consists of a set of potential h-arcs of a subpolygon. Thesc
arcs are arranged in the form of an arc tree, like the one
shown in Fig. Illb. The root of the tree is passed to the

procedure via the argument ROOT.

consists of a set of the potential h-arcs which appear in the

{ -optimum partition of the subpolygon. We can divide that
arcs into two types: (i) those arcs which are descendants of
some other arcs in the set and (ii) those arcs which have

no ancestor in the set, The arcs in type (i) are con-

densed into their ancestors and can be traced out from the
arcs in type (ii). The arcs in type (ii) are called ceiling
arcs and are kept in a reduced arc tree. The root of the arc

tree is passed back to the caller via the parameter ROOT.
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Step0 Lietthe arc at the root of theinputarctreebe hN ;
MIN-WEIGHT : = the weight of the minimum of the two
verlices of I'N;
T := an arc tree with only one arc, hN ;
Step 1 For each arc immediately above hN in the input arc-tree Do
Begin
Step la Let the arc to be processed be hR;
If there exists a non-degenerated arc above hR
then go to Step Ib
else go to Step lf;
Comment: hR is immediately above hN .
Step Ib PARTITION (hR);
Let the subtrcc returnedbeT’:
Comiment: Before processing hR , thesubtrces of hR
are first processcdrecursively,
Step lIc Let UR be the sct of arcs immediately above hR in T';

UR
Calculate S(h > :

R

UR
If s = MIN-WEKIGHTIT

PR

then go to Step ld

else go to Step le.
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Step 1d

Step le

Remove hR from T’ ;

while (there exists a non-degencrated arc, h,, inU_) and

] R’ —
(the supporting weight of hszlN-W}:JIGHT)Do

Begin
Remove hj from UR ;
Remove h. from T’ ;

3

Include all ceiling arcs of h, into UR :
3

end;
Insert the forest T’/ into T such that all arcs in UR are
immediately above hN in T.
Go to Step Ii.

If (there exists a non-dcgcncratcd arc in UR) and (its sup-

porting weight > the supporting weight of hR)

then
Among all the arcs in UR’ pick the one with maximum
supporting weight;
Let it be h.;
3
Condense h3 into hR and remove it from T';
Include all cciling arcs of hj into UR ;
Fix up the trce T’ so that all the ceiling arcs of hj arc
immediately above hR in T
go to Ste p lc;
end
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clsc

Begin
UR
Record S(h ) as the supporting weight of hR and all
R

arcs in UR as the ccil.ing arcs of hR; insert T/ into T
so that hR is immediately above hN in T,
go to Step li;

end.

step 1f Let hC be the degenerated arc above hR;

hC
Calculate S(h > :
R

he
If S h )2 MIN- WEIGHT
R

then_go to Step Ig

_e___l_sg go to Step Ih .

step Ig Remove hR:

Insert hc immediately above hN in T.
go to Step i .

h

h

) as the supporting weight of h_ and h __ as
R R C

Btep h Record S(

the ceiling arc of hR; insert the subtrec with hR and h(‘

into T so that hR is immediately above hN in T.

Step i End.

Step 2. Return T with root stored in ROOT to caller.
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Now, the details of the algorithm to find an optimum partition of

a convex polygon is presented.

Algorithm II

Input

out put

Step 0

step 1

Step 2

consists of n positive integers, which are the weights of the
n vertices of an n -gon. W/[1] is the weight of the minimum
vertex and W[i+1] is the neighbor of W [i] of the n-gon going

in the clockwise direction.

consists of a tree of potential h-arcs which exist in the

I -optimum partition of the n-gaon.

For i := 2 step ! until N do
i-1
cpli] : = 2 w 3] wijnl;
=1
cP[1]: =0 ;
Comment: The sum of adjacent products W [i] : W [j]lcan be

obtained from CP[j]l-CP[i] for 1 <i <j < N.

Apply the one-sweep algorithm to obtain a trce of arcs. Let
this arc tree be T.

Cominent: T contains all potentialh-arcsin the n-gon.

From T, remove those arcs which arc not potential
h-arcs;
If T is empty

then g o t o Step 6.

else go to Step 3.
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Step 3 Insert the degenerated arvce ]»l with weight W] to the
bottom of the tree, as the root of the tree;
Insert a degenerated arc with the local maximum weight

at the tip of each corresponding branch of the arc trec.

&tep PARTITION (hl);
Comment: h 1 is the root of 1T; when returned from
PARTITION, T will contain all the ceiling arcs with their

descendants in the { -optimum partition.
Step 5 Remove all degenerated arc s.
Step 6 Output T and stop.

This algorithm has beenimplemented in Pascal and the 1ist-

ing of the computer program is givenin Appendix II,

Theorem 3. The partition of the general convex n-gon obtained by the

algorithm is £ -optimum.

Proof. Using arguments similar to those in Theorem 2, we can first
prove that all the potential h-arcs which are deleted from the arc-tree
cannot be present in the { -optimum partition, then we prove that any arc
which is left in the arc-tree at the end of the algorithm must be present
in the { -optimum partition. Hence, the partition consisting of the h-arcs
output by the algorithm and with fans in the subpolygons bounded by a
potential h-arc and the arcs immediately above it in the output arc-

tree must be l-optimum. [ ]
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Let us examinec how much time wespend in executing the algorithimm.

Steps 0 and 1 each scans the polygon once, and hence takes O(n)
time. Since there arc at most n-3 arcs in T, Step 2 also takes O(n) time,
There will be a recursive procedure call for each arc in T (except the
leaf nodes). Inside each procedure call, there are two nested loops. The
innermost loop is the “while” loop in Step 1d and the outer one spans from
Steps Ic to le. Whenever the innermost loop is executed once, a potential
h-arc is deleted from T. Whenever the outer loop is executed once (i.e.
the ‘-‘then” part of Step le), a potential h-arc is condensed into its father.
Once an arc is deleted or condensed, it will never bc examined again. In
order to carry out the deletion and condensation efficiently, wecannot
examine all the arcs in U each time we go through the loop. Hence, we

R

need to order the arcs in UR in a priority queue and it takes O(log n) to
update the queue each time. Hence, it takes O(n log n) time in executing

Step 4 of the algorithm. Steps 5 and 6 each takes O(n) time. Hence, the

whole algorithm takes O(n log n) time to find the f -optimum partition.
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4. A closer look at the optimum partitions

Wc now present some thcorems which enablethe algorithm to
divide the polygon into several subpolygons and hence can improve the
average performance of the algorithm. These theorems have also been
mentioned in [4] without detailed proofs.

Let us consider the polygons where there are two or more

vertices with equal weights Wl

Lemma 9. For every choice of VI, V_,. . . (as prescribed in Part 1), if

2’

‘the weights of the vertices satisfy the condition

= < < e <
W17 2TV Wn o

then Vl—V2 exists in every optimum partition of the n-gon.
Proof. The lemma is true if Vl-V2 is a side of the n-g-on. Hence, we
can assume that V1, V2 are not adjacent to the same side of the n-gon.

The proof is by induction on the size of the n-gon. The lemma is
true for a triangle and a quadrilateral. Assume that the lemma is true for
all k-gons (3 <k = n-1) and consider the optimum partitions of an n-gon.

By Lemma 3 of Part I, we know that there are at least two vertices
with degree two in each optimum partition of the n-gon. We have the
following two cases,

() In an optimum partition of an n-gon, onc of the vertices with degree

two, say Vi’ has weights larger than w In this case, we can form an

1
(n-1)-gon by removing Vi with its two sides. By induction assumption,

VI"VZ is present in every optimum partition of the (n-1)-gon.
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(ii) Consider the complementary casc of (i), i. c. all vertices with
degree two have weights equal to wl in an optimum partition of the n-gon.

In other words, VI and V.2 arc the only two vertices with degree two in

that optimum partition, as shown symbolically in Fig. 14a. Note that
every arc in the optimum partition must dissect the n-gon into two sub-

polygons in such a way that VI, V2 can never appear in any subpolygon

together, else there will be more than two vertices with degree two in
the optimum partition. In Fig. 14b, we show a partition of the n-gon in
which V1 and V2 are connected. Let us denote the n-2 triangles in Fig, l4a

by P_,P P Except P1 and Pn

1 ARt all the other n-4 triangles are

-2

made up of one side and two arcs each. For each of these n-4 triangles,
we can find a unique triangle in Fig. 14b such that they both consist of
the same side. We use Pi' to denote the image of Pi in Fig. 14b. The

only two triangles left unmatched in Fig. 14b are vlv V2 and V1V2V'
a i

and they are the images of Pl and Pn respectively. Let the cost of Pi

-2

be Ci and the cost of 1P.’ be C. , Since Ci'éCi for 1 <i < n-2, the
1
partition in Fig, 14b is cheaper than that in Fig. 14a and we have

contradiction.
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(a) (L)

Fig. 14

Theorem 4. For every choice of Vl,Vz,... (as prescribed in Part 1), if

the weights of the vertices satisfy the condition

then every optimum partition of the n-gon must contain a triangle VIVZV
P

for some vertex Vp with weight equal to ws.  Note that if v\{ = w2< W3

<w4 S.e. S W then every optimum partition must contain the triangle
V1V2V3 since there is a unique choice of V3.

Proof. Similar to Lemma9, wc can prove this thcorem by induction on the
size of the n-gon. The theorem is true for any triangle or quadrilateral

satisfying the above condition. Assume the theorem is true for all k-gons

(3 £k £ n-l) and consider the optimum partitions of an n-gon.
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From Lemma 9, we know that VI, V2 are always connected in every

optimum partition. Hence, without loss of generality, we can assume VI, V2

to be adjacent to the same side of the n-gon. Again, we have the following
two cases.

(1) In an optimum partition, one of the vertices with degree two, say VI’

has weight larger than w In this case, we can remove V,1 with its sides and

3
form an (n-1)-gon. By induction assumption, every optimum partition of the

(n- 1)-gon contains a triangle \1/ V V for some vertex V_where w_~W .
2 p P P 3

(ii) Consider the complementary case of (i), in an optimum partition of

the n- gon, all vertices with degree two have weights less than or equal to W

Since VI-V2 is a side of the n-gon, for n z 4, either VI or V‘2 (but not both)
can have degree two, We have the following two subcases:

(a) If there are more than one vertex whose weight equals W, we
can form an (n-1)-gon by removing one of those degree two vertices whose

weight equals w By induction assumption, every optimum partition of the

31
(n-1)-gon contains a triangle Vlvz\/p for some vertex VP with \Iév =W,
(b) There exists only one vertex of weight W, In this case, there

must be only two vertices with degree two in the optimum partition of the
n-gon. These two vertices are V3 and either VI or VZ' Without loss of
generality, we can assume VI has degree 2. The situation is shown symboli-
cally in Fig. 15a. Again, every arc in the optimum partition must dissect the
n-gon in such a way that V1 and V3 can never appear in any subpolygon to-
gether, In Fig. 15b, we show a partition containing thec triangle V1V2V3 .

Using arguments similar to those in the proof of Lemma 9, we can show that

the partition in Fig, 15b is cheaper and we obtain a contradiction. B
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Fig. 15

Theorem 5. For every choice of VI, V2,. .. (as prescribed in Part 1), if the

weights of the vertices of the n-gon satisfy the following condition,

= T e e e = < < o <
1% Wi Ykl .oV

for some k, 3 £k < n, then every optimum partition of the n-gon contains
the k-gon V_ -V _-...-V_,
1 2 k

Proof. The proof is by induction on the size of the n-gon. The theorem is

true for any triangle and quadrilateral. Suppose the theorem is true for all
polygons with (n-1) sides or less and consider the optimum partitions of an
n-gon.

From Lemma 3 of Part I, there exist at least two vertices having

degree two in every optimum partition. We have the following two cases.
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(i) In an optimum partition of the n-gon, one of the vertices with degree
two, say Vi' has weight larger than Wl. In this case, we can remove the
vertex Vi with its two sides and obtain an (n-1)-gon. By induction assumption,
every optimum partition of the (n-1)-gon contains the k-gon Vl—VZ- .o v-Vk.

(ii) Consider the complementary case of (i), i. e. , all the vertices with
degree two have weights equal to V\i in an optimum partition. Let two of
these vertices be Vi’vj' We have the following two subcases:

(a) k> 3. We first form an (n- 1)-gon by removing Vl'and its two sides.

There are (k- 1) vertices with weights equal to wl in the (n- 1)-gon. By induc-
tion assumption, every optimum partition of the (n-1)-gon contains the (k-1)-
gon which includes Vj as one of its vertices. Since Vj has degree two in the
optimum partition, its two neighboring vertices, say Vx and VY, must also
have weights equal to wl and the arc VX—VY exists in the optimum partition
(Fig. 16). Similarly, we can remove the vertex V.Jwith its two sides \/J.-VX
and Vj—Vy and form an (n-1)-gon. By induction assumption, every optimum
partition of the (n- 1)-gon contains the (k- 1)-gon formed by the (k- 1) vertices
with weights equal to W1 in the (n-1)-gon and V.lis one of the vertices in the
(k- I)-gon. Now, by pasting the triangle VijVy and the (k-l1)-gon together,
we form a k-gon which includes all the vertices with weight equal to w1 in

the n-gon and this k-gon is contained in the optimum partition of the n-gon.
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Fig. 16

(b) k= 3. In this case, we have w1=w2=w3<w4ﬁ...swn.
Without loss of generality, we can assume V1 and V,both have degree two in
an optimum partition. Again, we can form an (n-1)-gon by removing V1 and
its two sides. By Lemma 9,'\72 and V3 are connected in every optimum
partition of the (n- I)-gon. Since V2 has degree two, VZ-V3 must be a side
of the n-gon. Next, we can remove VZ with its two sides and form an (n-1)-

gon. By Lemma 9,V1,V3 are connected by a side of the n-gon. The situa-

tion is shown in Fig. 17a. Then, the partition in Fig. 17b is cheaper because

+ T < T + T
T123 12y 13x 23y

» W ’...,W) @D |

and C(W]:WX Yeeas WY) = C(W3 N y
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Fig. 17

Now, whenever we have three or more vertices with weights equal
to wl in the n-gon, we can decompose the n-gon into subpolygons by forming
the k-gon in Theorem 5. The partition of the k-gon can be arbitrary, since
all vertices of the k-gon are of equal weight. For any subpolygon with two

vertices of weights equal to w we can always apply Theorem 4 and decom-

pose the subpolygon into smaller subpolygons. Hence, we have only to

consider the polygons with a unique choice of V i.e., each polygon has

11
only one vertex with weight equal to Wl,

Because of Theorems 4 and 5, Theorems 1 and 3 of Part | can be

generalized as follows.

Theorem 6. For every choice of V_,V (as prescribed in Part 1), if the

1 2,...

weights of the vertices satisfy the condition

w. < < < s g
1 W2 Vs Wh o

then Vl-V2 and Vl-V3 exist in fyery optimum partition of the n-gon.
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Theorem 7. Let annd Vz be two arbitrary vertices which arc not adjacent

in a polygon, and V__ be the smallest vertex from V o V _in the clockwise
, w z

manner (Y %xv Y %Vz), and VY be the smallest vertex from v, t© Vx

in the clockwise mannerY(Vi‘éVx,VyiéVZ). This is shown in Fig. 18

where we assume that V <Vz and Vy<V . The necessary condition
W

for VX-VZ to exist as an h-arc in any optimum partition is

w <w fsw <w ) |
y X z w
-V
-/'J -
e \\‘0 RN
¢ N
¢ \
¢ Y
{ R
P (W;ﬁ\/ﬁ
Vxl.\\ﬁ/{‘_) Nk
. {
.. !
‘~ AR ‘,"
..-<WY )'_0
Vy
Fig. 18

From Theorem 7, we know that any arc which exists as an h-arc in
some optimum partition must bc a potential h-arc. 'n other words, the
h-arcs in every optimum partition will bc gcncratcd by theone-swecp
algorithm. Hence, by modifying the condition in steps lc and 1d of the
procedure Partition to favor partitions with morc h-arcs, wc can obtain
other optimum partitions which consist of more h-arcs than the P-optimum

. 7
partition. 5



5, Conclusion
The problem to find the optimum order of computing a chain of
matrices has been around for several years [2]. It has been used as a
typical example to illustrate the dynamic programming technique in many
textbooks [1][3]. In this paper, a new approach is used to solve the
problem. Instead of tackling the matrix chain product problem directly,
it is transformed into the problem of partitioning a convex polygon and a
tailor-made algorithm for finding the optimum partition is developed.
The algorithm takes O(n log n) time and O(n) space. For those who want
to trade optimum solution for shorter execution time, an O(n) heuristic
algorithm has been presented in [5] This heuristic algorithm is very
simple to implement and its error bound given explicitly asa function
of the number of sides of the convex polygon and the ratio of the
weights of the largest vertex to that of the smallest vertex. The

worst error ratio is less than 15%.
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Appendix 1

PROGRAM OPTIMUM_ALGORITHM _FOR_A MONOTONE_BASIC_POLYGON;
consT MAX s1sk = 127;

TYPE POSs | NTEGER 0. . 32767, {1 im ted by the word-

size of the computer}

LI ST PTR = " LI ST ELEMENT ;

LI ST- ELEMENT = PACKED RECORD
HEAD, TAIL : POS_| NTEGER;
HEAD SNALL . BOOLEAN;
SUP_WEI GHT,
COST,
BASE PRODUCT,
S| DE- PRODUCT : | NTEGER;
DESCENDANT, NEXT : LIST PTR

END;
VAR w, CP . ARRAY [l..MAX_SIZE] OF INTEGER;
LI ST, LEAF : LIST_PTH
N : POS_INTEGER;

SEGVENT PROCEDURE INITIALIZING;

(************************************************%**k******)
(* Handles the inputs and initializing all the gl obal *)
(* vari abl es. *)
(*************************************k********************)

VAR | : | NTECGER

BEG N
WRI'"I"ELN ('a linear algorithm to find all the h-arcs in',
"the optimum') ;
WRI TELN (' partition of a monotone basic polygon',
(7/2/80) ")
VRl TELN

{obtain the inputs)
WRI TE (' Please enter the size of the pnlygon (between 3',
'‘and 'MAX S| zE-1, ') ') ;

READIN (N);
WR ITELN ;
WRITELN ('Now, starting from the smallest vertex and in'
''the ')
WRITELN (' clockwi se direction, enter the weights of' |,
' the vertices:');
FOR . := 1 70 N DO READ (W[I}]);
READLN;
WRITELN;
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{calculate the cumulative adjacent

pr od UICts aroundthe pnl ygon }
cpll) = 0;
FCR 1 := 2TO N DO Cp[I]) := CP[I-1] + W[I-1] * W[I];

(initialize the psuedn arc)
NEW (LEAF);
WITH LEAF™ DO
BEG N
BASE _PRODUCT
SIDE_PRODUCT
END;

0;
0;

{set up the output headi ngs}
WRI TELN ( ' the potential h-arcs in the partitions are : ');

END, ({initializing)

SEGVENT PROCEDURE ONE SWEEP (VAR L : LIST PTR);

(********************T*******************?*****************)
(* Sweep the pnlygon once, collects all potential h-arcs, *)

(* puts themin a |ist. The address of the head of the *)
(* list is stored in L. *)
(**********************************************************)
VAR STACK : ARRAY [1..MAX SIZE] OF

POS INTEGER;
TOP_ELEMENT, SECOND_ELEMENT, -
CURRENT, TCS . POS _INTEGER;
P, ARG LIST © LIST_PTR;

PROCEDURE pusH (C : | NTEGER) ;

(********************************************************)

(* Pushes the index C onto the stack and updates the *)
(* var iabl es T10S, TOP ELEMENT, and SECOND_ELEMENT. *)
(*********************?*******************?**************)
BEG N

STACK[TOS] := C

SECOND- ELEMENT : = TOP- ELEMENT;

TOP ELEMENT := C

TOS := 'IWs - 1;
END; {push}
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PROCCEDURE pOPp STACK;

(************T******************k*****k******k**k*fk*****)
( *Pops the top element off the st ack and updates the *)
(* wvar iabl cs TGOS, TOP ELEMENT, and SECOND ELEMENT . *)
*****************************************T**************)
BEG N

TOS = TOS + 1;

TOP_ELEMENT := SECOND ELEMENT;

SECOND ELEMENT := STACK[TOS t 2];
END; {pop stack}

(**********************************************************)

(* One-sweep begins here. *)
(**********************************************************)
BEG N

(initialize the local variables}
TOP_ELEMENT := 0
SECOND_ELEMENT :
STACK [N+1] := 0;
TGS := N

ARC LIST := NL:
PUSH (1);

PUSH (2);

CURRENT : = 3;

| ~»

0;

{scan through the pnlygon in the clockw se direction)
WHILE CURRENT < N DO
|F (WISECOND_ELEMENT] <= w[TOP ELEMENT]) AND
(W[TOP_ELEMENT] > W([CURRENT] )

THEN
BEG N
NEWP) ;
WwIiTH P° DO
BEG N
HEAD : = SECOND ELEMENT;
TAIL := CURRENT;

HEAD SMALL . = W[HEAD] <= WITAIL] ;
BASE- PRODUCT : = W[HEAD] * W[TAIL] ;
S| DE- PRODUCT := CP[TAIL] - CP[HEAD] ;
DESCENDANT : = NI L;
NEXT := ARC.LIST;
END;
ARC L1ISsT = P;

PCE'  STACK;

IF 108 >= (N-1) {there are less than 2
elements on the stack})
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THEN
BEGIN
PUSH (CURRENT) ;

CURRENT := CURRENT t 1;
END;
END
ELSE
BEG N

PUSH ( CURRENT) ;
CURRENT := CURRENT t 1;
END;

WHI LE (TOS <= (N-3))
AND (W[SECOND_ELEMENT] <= W[TOP_ELEMENT])
AND (W[TOP_ELEMENT] > W[N]) DO

BEG N
NEWP) ;
WTH p" DO
BEG N

HEAD : = SECOND- ELEMENT;
TAIL := N,
HEAD SMALL := W[HEAD] <= W[TAIL];
BASE- PRODUCT := WI[HEAD] * W[TAIL];
SI DE- PRODUCT := CP[TAIL] - CP[HEAD;

DESCENDANT : = NIL;
NEXT := ARC_LIST;
END;
ARC LIST := P,
POP_STACK;
END;

L := ARC LIST;
END; {one sweep}
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SEGMENT PROCEDURE MONO PARTITION (VAR L : LIST P1R);

(********k************T***********************?******f*****)

(* Obt aing al ) the h-arcs in the optimum par Ui tion of  the *)
(* pnlygon and returns them in a list. The add r ess of *)
(* the hcad of the list is stored in L. *)

(*******************************k**************************)

FUNCTI ON FAN _COST (HR, HC : LIST_PTR) : | NTEGER
(*****************************************k**************)
(* Calculates the cost of the fan of the subpnlygan *)
(* bounded above by HC and bel ow by HR *)
)

(*********************************************k**********

VAR TEMP1, TEMP2 : | NTECER,

BEG N
TEMP1 := HR" .SIDE_PRODUCT - HC" .SIDE_PRODUCT
+ HC BASE PRODUCT:;
WITH HR™ DO -
| F HEAD- SMVALL
THEN
BEG N
| F HEAD = HC" .HEAD
THEN TEMP2 := HC ™ .BASE PRODUCT

ELSE TEMP2 := CP[HEAD+1] - CP[HEAD] ;
FAN_ COST := (TEMPl - TEMP2) * W([HEAD] ;
END
ELSE
BEG N

IF TAIL = HC™ .TAIL
THEN TEMP2 := HC™ .BASE_PRODUCT
ELSE TEMP2 := CP[TAIL] - CP[TAIL-1];
FAN- COST := (TEMP1 - TEMP2) * W[TAIL] ;
END,
END, {fan_cost}

FUNCTI ON SUPPORTI NG_WEIGNT (HK, HC : LI ST PTR) : |NTECER

******************7***********k*********;***************)

(* Find the supporting weight of the subponlygon bounded *)

(* above by HC and bel ow by HR. *)
(********************************************************)

VAR Y : INTEGER;

BEG N
{calculate the denominator}
Y := (HR" .SIDE_PRODUCT - HR™ .BASE_PRODUCT)

- (HGCE1DE_PRODUCT - HC™ . BASE. PRODUCT) ;

{calculatethe SUPPORTING WBIGHT}
SUPPORTING VEIGHT := (HR .COST + Y - 1) DIV Y; _
(ceil ing function)

END; {supporting weight}
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PROCEDURE RHEMAQUE, (AR, Q. ", TLE), DR M TM, " TNIECIDY.,,
(*kkkk‘k’kk******k***"k*i***k‘)\*‘k*-{*kk*)\')\**ikﬂ‘k**iA"kﬁ'kkk*)\'kk*)
( *Removes all the arcs in S whose SUP_WLEIGIHTS arve cqual to * )

(*or larger than MINf romthe 1 is t .
(**************************************************k*****)

VAR NOT _DONE : BOCOLEAN,

BEG N
NOT _DONE : = TRUE;

VWH LE NOT _DONE DO

IFS=NL
THEN NOT_DONE := FALSE
ELSE

IF s".sup WEIGHT < MN
THEN NOT DONE .= EALSE
ELSE S := S” .NEXT;

END, { remove }

PROCEDURE SUB_PARTITION (VAR S : LIST_PTR; MIN : | NTEGER);

********************************************************)

(* Finds the optinmm partition of the subpolygonbounded *)
(* below by the potential h-arc at the head of S. The *)
(* h-arcs in the optinum partition of the subpnlygon *)
(* is kept in alist with S pointing to the head of *)
(* the list. *)
(********************************************************)
VAR TEMP . I NTEGER,

TEMP PTR : LIST PTR;

NOT _DONE : BOOLEAN,

BEGIN
IF 8" .NEXT <> NIL
THEN
BEG N

|F $" .HEAD SMALIL

THEN TEMP := W[S”~ .HEAD]

ELSE TEMP := W[S™ .TAIL];
SUB- PARTI TION  (S™ .NEXT,TEMP) ; {ST.NEXT may become
N1I, when return
from SUB_PARTITON}
END;
IF S .NEXT = NIL
THEN TEMP_PTR := LEAF {S is the last axc in thc list)
{ LEAY 1S a psucdn arc wi th

both LFAE" .BASE PRODUCT and
LEAF” .S1DE_PRODUCT equal to NIL}
ELSE TEMP_PTR := S .NEXT;
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S”. OST := FAN cosT(s,TEMP PTR);

NOT DON |1 1 = TRUF ;
Wi 1 Lk NOT_DON 1 DO
BEGIN
S” .SUP_WE IGHT := SUPPORTING_WEIGHT(S ,TEMP_PTR) ;

|F 8" .SUP_WEIGHT > = MIN (to see if the partition is
optimum in the subponlygon}

THEN
BEG N

REMOVE (S,MN); {delete all h-arcs not in the
opti mum partition nf the
subpnlygon}

NOT_DONE : = FALSE;
END
ELSE
BEG N
IF 8" .NEXT <> NIL
THEN
| F 8" .NEXT" .SUP_WEIGHT <= S~ .SUP_WEIGHT
THEN NOT-DONE : = FALSE
ELSE
BEG N {condensc S” .NEXT into S}
TEMP PTR := S” .NEXT;
S” . NEXT := TEMP PTR" .NEXT;
S".COST := S~ .COST t TEMP PTR"™ .COST;
TEMP_PTR" .NEXT := S .DESCENDANT;
S” .DESCENDANT -.= TEMP_PTR;
| F S” .NEXT = NIL
THEN TEMP_PTR : = LEAF
ELSE TEMP_PTR := S” .NEXT;
END
ELSE nNoT DONE := FALSE;
END;
END,
END; {sub partition}

BEG N
SUB_PARTI TION (L,W[1]);
END; {monn_partition}
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PROCKDURE WRITE LIST (L : LIST PTR; MIN , INDENT : INTEGER) ;
(***)\'*'k********?*********k*****~f******‘k***'k'k*******’k********)
(* bi spl ays the h-arcs in the list pointed by L. *)
(*******************************************’kl\'*********‘k*)\r*)

VAR TEMP POS_INTEGER;

BEG N
WH LE L <> NNL DO
BEG N
| F L” .HEAD SMALL
THEN TEMP := L” .HEAD
ELSE TEMP := L” .TAIL;
|F TEMP <> M N
THEN WRI TELN (' ':INDENT,L” .HEAD,' ':3,L" .TAIL);
WRI TE_LI ST (L”.DESCENDANT, TEMP,INDENT+3) ;
L := L™ .NEXT;
END,
END, {wite list)

BEG N {mai n program begi ns here}
I NI TI ALI ZI NG
ONE_SWEEP (LI ST);
MONO_PARTI TION (LI ST);
IF LIST <> NL
THEN WRI TE- LI ST (LIST, 1,3)
ELSE WKITELN (' ':3,'NIL');
END. {rnain progran
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Appendix 11

PROGRAM OPTIMUM _PARITTION_OF A_GENLRAL_CONVEX_POLYGON;

CONS' J' MAX- Sl ZE = 127; { the maxi mum number of vertices in
a polygon is 126 }
MAX INT = 32767; {the largest integer in the machine)

TYPE POS | NTEGER =0 . . MAXINT;
LIST PTR = " LI ST ELEMENT ;
LI ST- ELEMENT = PACKED RECORD
HEAD . POS | NTEGER,
STAY : BOOLEAN;
TAI L . POS INTEGER;
HEAD SMALL : BOOLEAN,
NEXT- : LIST_PTR
END;
TREE PTR = "TREE ELEMENT;
TREE- ELEVEN | = PACK6 RECORD
HEAD , TAI L : PCS_I NTEGER;
HEAD SMALL . BOOLEAN;
SuP_ W1 GHT,
TREE COST,
TREE- BASE __PRCDUCT,
TREE_SIDE_PRODUCT,
LOCAI._COS',
LOCAL BASE PRODUCT,
LOCAL- S| DE- PRODUCT: | NTEGER;
DESCENDANT,  NEXT,
H ARC, V ARC . TREE PTR;
LIST_ LI NK : LI ST-PTK;
DEPTH . INTEGER
END:
{v_ARC and H_ARC arc used in two
different ways : (1) they are
uscd to link the unprocessed arcs
tog et her to f orman arc- tree; and
(2) they are used as the left
1 ink and the right 1 ink of the
processced arcs in the leftist
tree for the prior ity queue. }
VAR w, CP © ARRAY [1. .MAX SIZE] OF INTEGER;
L1ST1, LIST2 : LIST PIR;
V 1I'REE , H TREE . TRE B PIR ;
N B : POS_INTEGER;
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SEGVENT PROCEDURE | NI TI ALI ZI NG,

(********************************'k**********‘k****k**)\'******)
(* Handles the inputs and initializing all the global *)
(* variables . *)
(**********‘k****************************************‘k***‘k**)

VAR | : | NTEGER

BEG N
WRITEIN (' a linear algnri thmto find all the h-arcs in');
WRI TELN (' the optinmum partition of a convex pnlygon',
" (7/16/80)"');
V\RI TELN,

{obtain the inputs]
WRI TE (' Please enter the size of the pnlygon (between 3°',
"‘and ' ,MAX_SIZE-1,'): ');
READLN (N) ;
WRI TELN;
WRI TELN (' Now, starting from the smallest’,
'"vertex and in the ') ;
WRI TELN (' clockwi se direction, ',
‘enter the weights of the vertices:') ;
FORI := 170 N DO READ (WI] );
READLN;
WRI TELN;

(calculate the cunul ative adjacent
products around the polygon}
Cp{1] := O;
FORI1 := 2 TO N DO CP[I] := CP[I-1] + W[I-1]* W[I];
{set up the output headi ngs)
WRI TELN ( ' the potential h-arcs in the partitions are:'):

END, {initializing]
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SEGMENTPROCEDUREONESWEER (VAR T, LT ST PTR) ;
(***kk*A-A*)\**k*-kk*»k-Ak‘F******k**kkk*»}c***k*’f*******ﬂA***gckk*-k)

(* Sweep the polyygon once, collects all potential h-arcs, *)

(* puts them in a 1 ist . The address of the head of the *)
(* list is storedinL,. *)
(*****************k***********************************k****’
VAR STACK . ARRAY [ 1..MAX SIZE] OF
POS_| NTEGER,

TOP_ELEMENT, SECOND_ELEMENT,

CURRENT, TGOS : POS | NTEGE R

P, ARC LIS1 . LIST _PTR;

PROCEDURE PUSH (C : | NTEGER);

(********************************************************)
(* Pushes the index C onto the stack and updates the *)
(* variables TGOS, TOP-ELEMENT, and SECOND- ELEMENT. *)

(********************************************************)
BEGIN

STACK[TOS] := C

SECOND ELEMENT := TOP_ELEMENT;
TOP thMENT = G

TOS := T0S - 1;
END; (push)

PROCEDURE POP__STACK;

(**x*****************************************************

)
(* Pops the top el ement off the stack and updates the *)
(* wvar iables TOS, TOP E LkM ENT, and SECOND ELEMENT . *)
(**********************i*********************************)
BEGA N

TGS := TCS + 1;

TOP_ELEMENT := SECOND ELEMENT;

SECOND ELEMENT : = STACK [TOs + 2];
END; {pop _stack)

BEG N {one sweep begins here)
{initialize the local var iables}

TOP ELEMENT .= 03
SECOND ELEMENT -.a 03
S’lACK[Ni] ] 1= 0;
TS : = N

ARC L1sT := NL;
PUSH (]);

PUSH (2);

CURRENT : = 3 ;
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(scan through the polygon in the clockwise direction)
Wi 1L CURRENT < N DO ‘
It (W[ SECOND _ELEMENT] <= W [ TOP Ii LEMENT] ) AND
(W[TOP_ELEMENT] > W [ CURRENT] )

THEN
BEG N
NEW P) ;
WTH p~ DO
BEG N
HEAD : = SECOND ELEMENT;
TAIL := CURRENT;
STAY : = FALSE;

HEAD SMALL := W[HEAD] <= WTAIL];
NEXT := ARC-LIST;
END;
ARC LI ST := P

POP _STACK;
IF 1708 >= (NI) {there are less than
2elenents on the stack)

THEN
BEG N
PUSH ( CURRENT) ;
CURRENT := CURRENT + 1;
END;
END
EI.SE
BEG N

PUSH ( CURRENT) ;
CURRENT := CURRENT + 1;
END;

WH LE (TOS <= (N-3))
AND (W[SECOND_ELEMENT] <= W [TOP_ELEMENT] )
AND (W[TOP_ELEMENT] > WN] ) DO

BEG N
NEW(P) ;
wiTH P~ DO
BEG N
HEAD : = SECOND- ELEMENT;
TAIL := N
STAY := FALSE;
HEAD SMALL = W{HEAD] <= W([TAIL] ;
NgXT = ARC LISYT ;
END;

ARC LI ST := P

POP_STAC K;
END

L := ARC_LIST;
END;, {one_swcep}
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SEGMENT PROCEDURE BUILD_TREE (VAR L @ LisT PTR
VAR VI, HT @ TREE PTR  FI RST, LAST, MIN @ POS INTEGER) ;

(*kkk*'k**'k;\***********;***'}\'kkk)\‘*'k‘k'k'k’k**‘k-k***’k*k***‘k.*"kkkk'k***)
(* Traces all the arcs in the list pointed by L and *)
(* build an arc-tree Wth the root pointed by T. *)
(****kk****************************************************)
VAR NO'T_DONE . BOOLEAN,

P . THEE PTk;

Q . LIST P1TR;

BEG N
NOT_DONE .= TRUE
VT := NL;
HT := NL;
WHILE NOTI' DONE DO
IFL =NL
THEN NOT_DONE := FALSE
ELSE
IF (L™ ,HEAD < FIRST) OR (L".TAIL > LAST)
THEN NOT DONE : = FALSE
ELSE
BEG N
Q:= L™ .NEXT;
IF L”.HEAD <> 1

TH EN
BEGIN
NEW (P) ;
WTH P~ DO
BEG N

HEAD : = L” .HEAD;
TAIL := L".TAIL;
HEAD SMALL := L” .HEAD_SMALL;
DESCENDANT := NL;
DEPTH : = 1;

LIST LINK := L;
{LOCAL_COST, ILOCAI_BASE PRODUCT,
LOCAL S1DE PRODUCT, TREE COST,
TREE BASH_PRODUCT, TREE St1pE:  PRODUCT,
H AR?, and V. ARC are undefined at this
poi nt }
IF (HEAD SMALL AND (HEAD = MIN) ) OR
-(NOT HEAD SMALL AND (TAIL = MIN))
THEN
BEGIN
N EXT @ = VL
VT = P,
END
EISE
BEGIN
NEXT -
HT : =
END;

HT;

O
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| F HEAD SMALL
THEN BUTLD TREE (O ,V.ARC, H ARC, -
=11 BAD ,TAL L, HEAD)
ELSE BUILD TREE (Q,V ARC,H ARC,
- - HEAD,TAIL,TAIL);

{note that there will be at npbst one arc
in the V ARC |ist but may be several arcs
in the HARC |ist }

END,
END;
L := Q;

END:
eno; {build tree}

SEGVENT PROCEDURE POLY_PARTITION (VAR T : TREE_PTR)

(****k****************T***********************T************)
(* To find all the h-arcs that are present in the optimum *)
(* partition of the polygon and returns themin the arc- *)
(* tree pointed by T. *)
(**********************************************************)

PROCEDURE FAN-COST (T : TREE_PTR) ;
(***************************************:\'****************)
(* To find the cost of the fan of the subpolygon bounded*)
(* below by the arc poninted by T and above by the arcs *)
(* pointed by T .H ARCs and 17" .V arcs. *)
(******************?**;\-*k***-k****-’;******k***k************)
VAR X : POS_INTEGER;
Y, S1, S2 . INTEGER;

BEGIN
W 180 7" DO
BEG N
| F HEAD SMALL
THEN -
BEG N
IF V ARC = NIL
THEN
BEGIN
X = HAD t 1,
Sl := CP[X] - CP[HEAD] ;
END
BEGIN
X := Vv ARC™ .TA11;
S1 :=V _ARC". TREE_BAS E _PRODUCT ;
END;
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S2 1= (CP[TAIL] - CP[X]);
Y := w[HEAD] ;

END
ELSE
BEGIN
IFVARC = NL
THEN
BEG N
X = TAIL - 1;
S1 := CP[TAIL] - CP[X];
END
ELSE
BEG N
X = V_ARC” .HEAD;
S1 := V_ARC™.TREE_BASE PRCDUCT;
END;
S2 := (CP[X] - CP[HEAD]);
Y := W[TAIL];
END;

IF H ARC <> NIL
THEN-S2 := S2 - H ARC™ .TREE_SI DE_PRODUC1

+ H ARC™ . TREE BASE: PRODUCT;
(all the SIDE_PRODUCTs and the BASE_PRODUCTs are
added together and stored in the root of the
leftist tree pointed by H ARC }

LOCAL CcosT := S2 * Y;
LOCAL- SI DE PRODUCT := SI + S2;
LOCAL- BASE- PRODUCT := W[HEAD] * W[TAIL]J;
END;
END; {fan-cost}

PROCEDURE SUPPORTI NG WEIGHT (T @ TREE PTH) ;

(**k****************?****************?*******************)
(* To find the supporting weight of the arc pointed by 7*)
(* wth respect to the subpnlygon bounded below by the *)
(* arc painted by T and above by the arcs pointed by *)
(* the T".H ARC and T~ .V ARC. *)

(***********?************‘;*****************)‘c*************)

VAR D : | NTEGER

BEGIN
WI1TH 17 DO
BEGIN
D := (LOCAL-S 1DE_PRODUCT - LOCAL_BASE_PRODUCT) ;

SUE_ weIcHT := (LOCAL-CON + D - 1) D'V D
{ceiling function

END;
END, {supporting wei ght

92



FUNCTION MERGE (T1 , T2 : TREF PTR) : TREE PITR;
(***k***7\'*'k'k****k************?*********k*-;***************)
(* Mcerges two leftist trees returng it in %)
(* MERGE. *)
(**********‘k*********************************************)
VAR TEMP PTR TRFZE_PTR;

TEMP- COST, TEMP_ BASE- PRODUCT,

'l‘EMP__SI DE PRODUC'1

intn onc and

| NTEGER;
BEG N

IF T2 = NIL
THEN MERGE := Tl
ELSE

IF T1 = NIL

THEN MERGE := T2

ELSE

BEG N

TEEIP cosT := T1".TREE_COST t T2 .TREE_COST,;
TEMP_SIDE_PRODUCT := T1  .TREE_SIDE PRODUCI

+ T2" .TREE_SIDE_PRODUCT;
TEMP_BASE_PRODUCT := T1".TREE_BASE PRODUCT

+. 777 TRRE BASE- PRODUCT
|F T1".SUP_WEIGHT < T2".SUP_WEIGHT

THEN
BEG N
TEMP_PTR := T1;
T1 := T2;
T2 := TEMP_PTR;
END;

WTH 117 DO
BEG N
H ARC : = MERGE (HARC, '1'2);

{H ARC never eqguals NIL at this point}
IF-V ARC = NI L
THEN
BEG N
V ARC : = H_ARG
H ARC := NIL
END
ELSE
BEG N
|F V ARC™ . DEPTH < HARC™ . DEPIH
TH EN
BEGIN
TEMP_PTR := V_ARC
V ARC @ = B ARC;
H ARC : =T 'EM B.PIR ;
END;
DEPTH := H ARC* . pepru t 1;
END,
TREE COST : = TEMP COST ;
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TREE SI DE. PRODUCT : = TEMP SI DE PRODUCT,

TREE BASE_PRODUCT @ = TEMP .BAS ETPRODUCYT ;
END;  --
MERGE := T1;
END;
END, {rmerge}

FUNCTI ON CONDENSE (T : TREE PTR; MN : INTEGER) : BOCLEAN,

(********************************************************

(* CONDENSE is set to false if T = NIL or 177 .SUP WEIGHT *))
(* <= MN *)
(********************************************************)
BEG N

IFT=NL

THEN CONDENSE : = FALSE
ELSE CONDENSE := T .sup_ WEI GHT > MIN;
END, {condense}

PROCEDURE COMBI NE: (VAR T : TREE PTR; V FLAG : BOO.EAN);
(******************************;******?******************)
(* If V_FLAG, it conbines the arc pointed by 7" .v ARC * )
( intn the arc pointed by T, else it conbines the arc *)
(* pointed by T".H ARC into the arc pointed by T. In ¥*)
(* either case, the ax to be conbined is deleted from *)
( the corresponding leftist tree and put into the *)
( DESCENDANT |ist of the parent. *)
*)

(*******************************************************

VAR TEMP PTR ! TREE PTR;

BEG N
IF V_FLAG
THEN
BEG N
TEMP PTR 1= 77 .V_ARC,
" .V-ARC : = MERGE (TEMP PTR” .V ARC,TEMP PTR" .H ARQ) ;
END
ELSE
BEG N
TEMP PTR := T .H _ARG
. .H ARC := MERGE (TEMP PTR".V ARC,TEMP_PTR" -H_ARC),
WND;

TEMP PTR .V ARC := NI1L;
TEMP_PTR™ .H ARC. = NIL;
TEMP PTR™ .NEXT LT .DESCENDANT';
T . DESCENDANT := TEMP_PIK;
T" .LOCAL COST := T~ . LOCAI COST + TEMP PTR" . LOCAJ COST;
7" ® LOCAr, -SIDE PRODUCT' : = T7 . LOCAL SIDE PRODUCY --

t TEMP_PTR".LOCAIL S1 DE pRonﬁCT

- TEMP PTR™ . LOCAL, BASE PRODUC1

1ol

END; { conbi ne }
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PROCEDURFE REMOVE (VAR T : TREE PTR; MN : INTEGER) ;
(********"k***********‘k*"k***“}:**?************'k**'kk*'k*’k**‘k**)
( * Remnve s al 1l the arcs in the leftist tree pninted by 1%)

(* whose SUP WEIGHTs are larger than or equal to MN. *)
(************T****************‘k*******k***k*******k******)

VAR NOT DONE : BOCLEAN,

BEG N
NOT _DONE : = TRUE;
wHILE NOT DONE DO

IFT =NL
THEN NOT-DONE : = FALSE
ELSE

IF T" .sup_VEIGHT < MN

THEN NOT _DQNE.- = FALSE

ELSE T := MERGE (T" .V_ARC,T" .H ARO);
END; (renove)

PROCEDURE: SUB PAR] I'TON (VAR TREE I TREE_PTR;
MIN : INTEGER);
(KR KK KA KKK KK KKK KKK KKK KR KR KKKk ARk Rk ok kk kh kA K KX KK KKK KK

(* To find the optimum par ti tion of the subpolygon *)
(* bounded below by the root of the arc-tree pointed *)
(* by T *)

Ak kk kA AR ARKARRAR KK AR ARR AR I AN Kk ARk khk kX kA XXk hkh kA kX %)
vaR T, R P, TEMP PTR : TREE_PTR;

TEMP : | NTEGER:
NOT DONE, FLAG : BOCOLEAN
BEGIN
T := TREE;
R:= NL";:
WHILE T <> NIL DO
BEG IN

P := T .  NEXT;

T .NEXT := N L;

| F T° .HEAD SMALL

THEN TEHP := W [T . HEAD]

ELSE TEMP := W[T™ .TAIL];

IF °.H ARC <> NL

THEN SUE- PARTI TION (T" .H ARC,TENP) ;
{when return, all the h-arcs in the subpol ygon
will be put in a priority qucue

IF 7.V ARC <> NIL
THEN SUB PARTITION (17 .V ARC ,TEMP) ;

{there shonuld be at most 1 v-ax, i.e.

T . v ARC".NEXT = N1L, when recturn, all the
h-arcs in the subpnl ygon will be put in a
priori ty queue }
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{calculate the cost of the fan of the subpolygon
bounded below by the arc pointed by T and above by
the v-arces and h-arcs of 7T }

FAN_COST(T) ;

NOT DONE : = TRUE

FLAG : = TRUE;

VH LE NOT _DONE DO
BEG N

(calculate the supporting weight
of the arc pointed by T}

SUPPORTI NG VEI GHT () ;

I|F T° .sup WEIGHT >=MIN {to see if the partition
is optimumin the

subpolygon }
THEN
BEGA N
REMOVE (T,MN) ; {delete all h-arcs not
in the optimum par ti tion
of the subpnlygon }

NOT DONE := FALSE;
FLAG := FALSE;
END
ELSE
I F* CONDENSE (T".V_ARC,T" .SUP WEIGHT)
THEN COMVBI NE (T, TRUE)
ELSE
|F CONDENSE (T".H ARC,T" .SUP WEIGHT)
THEN COMBI NE (T, FALSE) -

ELSE NOT_DONE := FALSE;
END;
{maintain the leftist tree structure)
| F FLAG
THEN
BEGIN

T" .TREE COST := T .LOCAL _COST;
T” . TREE- S| DE_ PRODUCT := T .LOCAL_SIDE PRODUCT;
T" .TREE_BASE_PRODUCT := 17 .LOCAI, BASE PRODUCT;
| F T".V_ARC <> NIL B

THEN
BEG N
T" .TREE_COST := 17 .TREL_COST
+ 17 . v_ARCT . TRE E_COST ;
T" .TREE_SI DE. PRODUCT := T" .TREE SI DI PRODUCT
+ T"TV ARCT LTRE K S 1DE PROD U CT
- T" .V_ARC . TREE BASE PRODUCT;

END;
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IF 77 .H_ARC <> NII

THEN
BEG [N
1" . TREE COST . =17, TREE COSY
+ 1T 0L L UTREE.COST
7" .TREE_SIDE_PRODUCT := 17 ,TREE_SIDE_PRODUCT
"+ T .H_ARC” ,TREE_SI DE_PRODUCT
- 7" .H_ARC™ .TREE_BASE_PRODUCT;
END;
IF T".V_ARC <> NIL
THEN
IF 177 .H_ARC <> NL
THEN
BEG N
IF T°.V_ARC" .DEPTH < T" .H_ARC” .DEPTH
THEN
BEG N
TEMP PTK := T .V_ARC
T".V-ARC := T " .H_ARC;
T .HARC := TEMP PTR;
_END; . R
T" .DEPTH := T  .H_ARC"~ .DEPTH + 1;
END
ELSE
ELSE
| F T" .H_ARC <> NIL
THEN
BEG N
T .V ARC : = T" .H_ARC;
T".HARC := NL;
END,
END,
R := MERGE (R,T) ;
T:= P
END;
TREE ! = R

END; {sub partition)

BEGI N {polypartitionbeginshere}
SUB PARTLTION (T | W[1]) ;
END, {pnly partition}
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PROCEDURE MARK LIST (1 : TREE _PTR);
(Fhrk ke kK kKK TRKK KRR KK KKKRRATARR KA AR R R KRR KKK K KRR K A KKK XK Xk )

(X Traverses the tree pointed by T preorderly, finds out  *)
(* all the potential h-arcs which are present in the *)
(* opt imumpartition of the pnlygonand marks the *)
(* correspond ing elements i n the list porinted b y LIST1., *)
(**********************************************************)

BEG N
VHLE T <> NNL DO

BEG N
T" .LIST_LINK™ .STAY := TRUE
MARK- LI ST (T .DESCENDANT) ;
MARK LI ST (T".V_ARQC);
MARK- LI ST (T" .H_ARC) ;
T -« T" .NEXT;

END;

END;, {mark-list}

PROCEDURE WRITE_LIST (VAR L : LIST_PTR;
FIRST, LAST, MN, INDENT : |INTEGER);

(***************i******************************************)
(* Displays the h-arcs in the list pointed by L. %)
(**********************************************************)
VAR TEMP : POS_| NTEGER,

NOT _DONE : BOOLEAN;

BEG N
NOT_DONE : = TRUE;
WHILE NOT DONE DO

IF L = NIL
THEN NOT- DONE : = FALSE
ELSE

IF (L” .HEAD < FIRST) OR (L".TAIL > LAST)
THEN NOT_DONE : = FALSE
ELSE
BEGIN
|F L™ .sTAaY
THEN
BEG N
| F L .HEAD SMALL
THEN TEMP = L".HEAD
ELSE TEMP := L" .TAIL;
IF TEMP <> M N
THEN
BEG N
VRI TELN (' ': INDENT,
L” .HEAD,' ':3,L" .TAIL);
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WRI TE- LI ST (L" .NEXT, rA.‘ .HEAD,
L™ .TAIL,TEMP, INDENT+3);

END;
END: {write-list)

(**********************************************************)

(* main program begins here. *)
(**********************************************************)
BEG N
| NI TI ALI ZI NG
ONE_SWEEP (LIST1);
LIST2 := LISTIl;
BU LD _TREE (LIST2,V_TREE,H_TREE,1,N,1); {v TREE = NL)
POLY PARTITION (H _TREE);
|F HTREE = NIL
THEN-WRI TEL, N (' ':3,'NIL")
ELSE
BEG N
MARK LIST (I1-TREE);
WRI T:-LIST (LIST1,1,N,1,3);
END ;
END. {main program
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